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Polar Decompositions and Related Classes of Operators 
in Spaces 1-I,  

Corne l i s  V. M.  van  der  Mee*  A n d r 6  C. M.  R a n  L e i b a  R o d m a n t  

Polar decompositions with respect to an indefinite inner product are studied for bounded linear 
operators acting on a II~ space. Criteria are given for existence of various forms of the polar 
decompositions, under the conditions that the range of a given operator X is closed and that zero 
is not an irregular critical point of the selfadjoint operator X[*]X. Both real and complex spaces 
H,~ are considered. Relevant classes of operators having a selfadjoint (in the sense of the indefinite 
inner product) square root, or a selfadjoint logarithm, are characterized. 

1 Introduction 
In this work we study polar decompositions of bounded linear operators in infinite dimensional 
linear spaces with respect to an indefinite inner product, and related classes of operators, such as 
operators having selfadjoint square roots or selfadjoint logarithms. It will be assumed throughout 
that the underlying linear spaces are separable Hilbert spaces, and that the indefinite inner product 
under consideration is non-degenerate (i.e., only the zero vector is orthogonal to the whole space) 
and has a finite upper bound for the dimensions of its negative (with respect to the indefinite inner 
product) subspaces. Such indefinite inner product spaces are commonly known as Pontryagin or 
II,, spaces. Many results in the present paper represent extensions to Pontryagin spaces of earlier 
results obtained in [BR, BMR31, BMR32, BMR33] for finite dimensional indefinite inner product 
spaces. 

We fix an infinite dimensional separable Hilbert space ~ over F ,  where F is the field of real 
numbers N or the field of complex numbers C, and an invertible selfadjoint operator H E /:(G) 
(here and elsewhere/:(G) stands for the Banach algebra of bounded linear operators on ~) such 
that the H-invariant subspace corresponding to the negative part of the spectrum of H is finite 
dimensional; let us denote by ~ the (finite) dimension of this subspace. 

Consider the inner product induced by H by the formula [x, y] = (Hx, y), x, y E ~. Here 
( �9 �9 ) stands for the Hilbert space inner product in ~. The space G equipped with the indefinite 
inner product [ . ,  �9 ] will be denoted by II,~. The vector x C ~ is called H-positive if [x, x] > 0, 
H-neutral if [x, x] = 0, and H-negative if [x, x] < 0. A subspace (always understood as a closed 
linear set) s of ~ is called H-neutral if all elements of/~ are H-neutral vectors. A subspace is 
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called strictly H-positive (resp., strictly H-negative) if all its nonzero elements are H-positive 
(resp., H-negative). We denote by •[.L] the H-orthogonal companion of a subspace/~: 

/~[• = {x E ~ : [x, y] = 0 for every y E/~}. 

All operators are assumed to be bounded and linear (with respect to the Hilbert space norm I1" II 
in G), unless explicitly stated otherwise. 

Well-known concepts related to inner products are defined in an obvious way. Thus, given an 
operator A on ~, the H-adjoint A[*] is defined by [Az, y] = [x, A[*]y] for all x, y E G. In that 
case A [*] = H-1A*H, where A* denotes the Hilbert space adjoint of A. An operator A is called 
H-selfadjoint if A[*] = A (or equivalently, if HA is Hilbert space selfadjoint). An operator U is 
called H-isometry if [Ux, Uy] = Ix, y] for all x, y E ~ (or equivalently, if U*HU = H). Note that 
every H-isometry has zero kernel; moreover, every linear transformation (not assumed bounded 
a priori) U on ~ such that [Ux, Uy] = [x, y] for all x, y E ~ is in fact bounded (see Corollary 2, 
Section 6 of [IKL]). An operator is called H-unitary if it is an H-isometry defined on ~ and maps 
onto G. Clearly, H-unitary operators have a (bounded) inverse which is also H-unitary. 

We now introduce the notion of polar decomposition with respect to indefinite inner products in 
H,~ spaces. A representation X = UA, where A is H-selfadjoint and U is an H-isometry defined 
on a linear set containing the range of A, will be called an H-polar decomposition of X. Note 
that in contrast with the standard polar decompositions for Hilbert space operators, we allow the 
factor A to be merely H-selfadjoint, not necessarily H-semidefinite. In finite dimensional spaces, 
H-polar decompositions have been studied recently in [BR, BMR31, BMR32, BMR33, LMMR, 
MRRI, MRR2, MRR3]. 

Besides the introduction, the paper consists of 4 sections. In Section 2, operators that admit 
H-polar decompositions with various additional properties are described using a suitable version 
of Witt's theorem. This theorem provides extensions of isometries under appropriate conditions. 
Spectral properties of operators of the form X[*]X and those operators that admit a selfadjoint 
square root are described in Section 3. In Section 3 we present also a result concerning existence of 
H-selfadjoint logaritms of invertible H-selfadjoint operators. The main results describing H-polar 
decompositions in terms of a canonical form of X[*]X, under the hypotheses that X has a closed 
range and the H-selfadjoint operator Xt*]X has no irregular singular point at zero, are stated and 
proved in Section 4: Theorem 4.1 concerns general H-polar decompositions, and Theorem 4.2 
concerns H-polar decompositions with the H-unitary factor U. We also indicate in Section 4 a 
result concerning existence of H-polar decompositions of H-normal operators. Both Sections 3 
and 4 concern the complex case only. Several corresponding results for the real case are stated in 
Section 5. 

The results on H-polar decompositions are closely related to results on certain decompositions 
arising from the theory of an H-modulus of an operator as developed by Potapov [P1, P2]. An 
operator R is called an H-modulus of a (bounded) operator X in a Krein space if R 2 = X[*IX, 
K e r r  = KerX[*]X and finally, the spectrum of R is nonnegative. In this setting the concept of 
H-polar decomposition requires the H-selfadjoint factor to be an H-modulus of X and allows the 
H-unitary factor to be a partial H-isometry. In [P1, P2] it was shown that any H-nonexpansive 
matrix allows such a restricted H-polar decomposition (and in fact the H-partial isometry can 
then be taken to be H-unitary). These concepts were extended to the infinite dimensional case by 
Ginzburg [Gil, Gi2], and finally, in the paper by Krein and Shmul'jan [KS2] (see also [KS1]), it 
was shown that a strict H-plus operator X admits such a restricted H-polar decomposition if and 
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only if the spectrum of X[*]X is nonnegative and the image of X is an H-nondegenerate subspace. 
If in addition to this, KerX[*] is uniformly H-negative and KerX[*] has the same dimension as 
KerX,  then the H-partially isometric factor in the H-polar  decomposition can be chosen to be 
H-unitary. 

2 Polar decompositions and extensions of isometrics 

Let ~ be a rI,, space. We recall the definition of an H-polar decomposition X = UA of an operator 
X E s  given in the introduction. An H-polar decomposition X = UA is called H-unitary if 
the operator U appearing in it is H-unitary. Classes of operators that are closely related to H-polar 
decompositions, include H-selfadjoint operators of the form X[*]X, and/-/-selfadjoint operators 
having an H-selfadjoint square root. The existence of a close connection between these classes of 
operators, which is sufficiently well understood in the finite dimensional case, is apparent from the 
following three results. 

Theorem 2.1 An operator X admits an H-polar decomposition if and only if there exists an H- 
selfadjoint operator A with the following properties: 

(a) X[*]X = A2; 

(b) Ker A = Ker X. 

Moreover, only such operators A appear in H-polar decompositions X = UA of X .  

Proof. Conditions (a) and (b) are immediate if there exists an H-isometry U defined on Im A 
such that X = UA. Conversely, if conditions (a) and (b) are satisfied, then the map U : Im A -+ 
Im X defined by U(Ax) = Xx ,  is well-defined, linear, and an H-isometry. Hence X = UA is an 
H-polar  decomposition. [] 

For a (closed) subspace "12 of ~, we denote by codim V the (finite or infinite) dimension of a 
direct complement of V in g. 

Theorem 2.2 An operator X admits an H-polar decomposition X = UA satisfying the condition 

eodim Im A _< codim Im X (2.1) 

and with U defined on all o f f  and is bounded below, i. e., there exists a positive constant C such 
that C[[x[I _< [[Uxl[ for every x E ~, if and only if there exists an H-selfadjoint operator A with 
the following properties: 

(a) X[*]X = A2; 

(b) Ker A = Ker X;  

(c) there exist positive constants C1, C2 such that C11[Ax[[ _ [[Xx[[ _~ C2 [[Ax[[ for every x C ~ ; 

(d) codim Im A < codim Im X. 
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Moreover, every such A, and only such A, appears as the H-selfadjoint factor in the H-polar 
decomposition X = UA with the property (2.1). 

Theorem 2.3 An operator X admits an H-unitary H-polar decomposition if and only if there 
exists an H-selfadjoint operator A with the foUowing properties: 

(a) X[*IX = A2; 

(b) Ker A = Ker X;  

(c) there existpositive constants (71, (72 such that (7111Azl[ -< IlXzll _< (7211Azl[ for every z E ~ ; 

(d) eodim Im A = codlm Im X. 

Moreover, every such A, and only such A, appears as the H-selfadjoint factor in the H-unitary 
H-polar decomposition X = UA. 

As in the finite dimensional case, the proofs of Theorems 2.2 and 2.3 are based on the extension 
of isometries described by Witt's theorem. Before proving this theorem in Pontryagin spaces, we 
discuss the concept of  "skewly linked" H-neutral subspaces (cf. [IKL], Lemma 1 3.1). Indeed, if 
s is an H-neutral subspace of FI,,, there exists a subspace .T" of the same finite dimension as E with 
the following properties: 

(i) .7 r is an H-neutral subspace; 

(ii) no nonzero vector of s is H-orthogonal to .T; 

(iii) no nonzero vector of.~" is H-orthogonal to ,if; 

(iv) the H-inner product does not degenerate on the direct sum .)r-i-s (Here ~ + C  is the (alge- 
braic) direct sum and .T" @ ~ the direct sum of.)r and s with H-orthogonal components.) 

Note that (ii) and (iii) follow from (iv). Two H-neutral subspaces .T" and s are called skewly linked 
if conditions (i)-(iv) are satisfied. Corollary 1 to Theorem 1 3.4 of [IKL] shows that the orthogonal 
companion C [• of E is a direct complement of .T" if .T is skewly linked with s Now Theorem I 
3.4 of [IKL] (originally proved in [IK, Bo]) is as follows: 

Theorem 2.4 Let s be an arbitrary subspace of II~, let .M = s and denote by E the isotropic 
part s fq .A4 of ~.. 

(i) f f  we choose decompositions s = s @ ~ and .M = ./~41 @ C, then there exists at least one 
subspace .~ C II~ which is skewly linked with C and such that 

17,, = Z:I �9 (C-i-.~') �9 .h41. (2.2) 

(ii) I f  9 r is an arbitrary subspace of II~ which is skewly linked with s then there exist unique 
decompositions L = s �9 E and ./V[ = A41 @ E such that (2.2) holds. 
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Notice that Theorem 2.4 is valid in the real case as well, with essentially the same proof (it is 
stated and proved in [IKL] for the complex case only). 

Let us now apply these results to obtain Witt's theorem for Pontryagin spaces. In the finite 
dimensional case, this theorem and various refinements can be found in [BMR33], although the 
basic result itself has been known for decades. 

Theorem 2.5 Let 12~ and 12~ be closed subspaces of II~ and let Uo be a continuous H-isometric 
operator mapping 121 onto 122. Assume that codlin 121 >_ codim 122. Then there exists a linear 
operator U : II~ -4 II~ such that 

[Uz, Uy] = [x, y], z, y EII , , ,  and Uz = Uoz, z ~ 12~. 

Moreover, i fcodim 121 ~- codim "1;2, then Uo can be extended to an H-unitary operator on II~. 

Proof. Let ,fq and g2 be the isotropic parts of 121 and 122, respectively, so that Uo maps gl 
isometrically onto g2. Let/2~ and .A41 be a closed strictly positive and a strictly negative subspace, 
respectively, of 121 such that 121 = 121 @ $1 @ .All. Now let/212 = U0[/21] and .M~ -- Uo[/2~]. Then 
/2~ and .M~ are a closed strictly positive and a strictly negative subspace, respectively, of 122 such 
that 122 = s (9 s @.M~. We now choose the subspace .~'1 skewly linked with $1 and the subspace 
.T'2 skewly linked with g2, and define 

II,~1 =/21 (9 (gl-bYl) G M I ;  II,~2 = Z;12 @ (e2~-Y2) @ 3all 2. 

Then choosing a basis el, . --  , e,~ o in gl  and a basis f l ,"  �9 �9 , fmo in $2 with 

Y l  = U o e l ,  . . " , / t o o  = U o e m o ,  

we find vectors g l , " " ,  e,,~o to form a basis of U1 such that [~i, e~] = 3i,j for i, j = 1 , . . . ,  too, 
and vectors ] 1 , " "  , ],no to form a basis of.T'2 such that [.~, f~] = 5i.j for i, j = 1 , . . .  , ra0. Now 
readjust the vectors e l , " "  , e,no and fl ,"  �9 �9 , ],no by defining 

1 ~ 
e i  = ~ i  - -  =[ei,~ilei, 

Now defining Ulz = Uoz on 121 and U1()-'~=~ ~j~j) = Y'~.i~__~ ~jfj, we extend Uo to an isometry 
U1 from I-I,, 1 onto II,,2. Indeed, U1 maps .T'l-i-gl isometrically onto U2--i-,s as shown by the two 
identities 

~ i  + r]ie~), ~ j  + vje~ = ~ + 0~N) ; 
j = l  ' =  

(r § r/,fi), (#jf~ + v~f~) = (r + 0 iN) ,  
j = l  i = 1  

while the three spaces in the decompositions II,~j = /2J  | (.T'j-i-gj) @.Adj, j = 1, 2, are orthogonal. 
(In the real case, the complex conjugation is omitted in the above formulas.) Since 0"1 is now 
an H-isometry from the nondegenerate subspace 11,,1 onto the nondegenerate subspace II,,2, and 
codim II,,1 > codim II,~2, it is now simple to extend it to an H-isometry defined on 11,~ (cf. Section 
9.1 of [IKLI). 
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If U0 maps "1)1 onto ~;2 and codlin ))1 = codim 1;2, then U0 is first extended to an H-isometry 
U1 mapping the nondegenerate closed subspace 1-I,,1 onto the nondegenerate closed subspace II,~2, 
as explained above. However, the codimension condition implies that II,~l and II,~2 have the same 
codimension. It now follows from the last paragraph of Section 9.2 of [IKL] that U1 can in turn be 
extended to an H-unitary operator on II,~, which completes the proof. [] 

In the above proof we have stipulated bases on the isotropic parts of the closed subspaces '1)1 
and "1)2 between which the given isometry is acting. However, since the full space is a l'I,~-space, 
the finite dimensionality of these H-neutral subspaces allows one to choose these bases. Note that 
in the space II,,, the dimensions of H-negative and H-neutral linear sets are bounded above by n; 
in particular, they are finite dimensional, and therefore automatically closed. 

Proof of Theorem 2.2. We mimic the argument given in [BR]. The existence of an H-polar  
decomposition X = UA, where U is defined on all of ff and is bounded below, easily implies that 
A satisfies conditions (a) - (c). Condition (d) need not be proved, since it is included in the type of 
H-polar  decomposition described in the statement of Theorem 2.2. 

Conversely, if there exists an H-selfadjoint A satisfying conditions (a) - (d), then define U0 from 
I m A  onto I m X  by Uo(Az) = X z  for every z E H,,. Clearly, U0 is a well-defined and bounded 
H-isometry defined on Im A which is bounded above and below (because of (c)). Therefore, U0 
can be continuously extended to Im A and Uo 1 can be continuously extended to Im X.  Writing 
U1 for the former extension, one easily sees that U1 maps Im A onto Im X.  Next, condition (d) 
allows us to apply Theorem 2.5 to extend U1 to an H-isometry U on H,~. Since one obviously has 
X = UA, this completes the proof. [] 

The proof of Theorem 2.3 is similar to that of Theorem 2.2 and will therefore be omitted. 

3 Operators of the form X[*]X and selfadjoint square roots 

In connection with Theorems 2.1, 2.2 and 2.3, it is of interest to study operators of the form X[*]X. 
It will be convenient to consider in this section the complex case only (except for Theorem 3.10), 
and postpone the discussion of the real case to Section 5. 

The following result is a particular case of Theorem VII.2.1 of [Bo]. A transparent proof for 
the finite-dimensional case [BR] can be generalized to the present context. 

Proposition 3.1 In an infinite dimensional H~-space, an H-selfadjoint operator Z is of the form 
X[*]X for some X E f-,( ~ ) if and only if the spectral subspace of H Z corresponding to the negative 
part of a( H Z) has dimension at most t~. 

It is a natural question to ask whether a restriction of X[*]X to an H-orthogonally reducing 
invariant subspace is again of the from Y[*]Y, where the operator Y, as well as the corresponding 
indefinite inner product, act in the invariant subspace. This turns out to be false in general, as the 
next example shows. 

Example  3.2 Consider on a finite dimensional space H = 1,, @ - I , ,  Z = Z1 @ Z2, where Z1 and 
Z2 are negative. Clearly, if v < n the condition of the above proposition is satisfied. However, 
~(I)  = 0, and Z1 is negative. So, unless v = 0, the condition is not satisfied for the pair (Z1, I ) .  
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Corollary 3.3 The set of all operators of the form X[*Ix is closed in the strong operator topology. 

Theorem 3.4 a( X[*I x ) \ [0, oo) is a finite set consisting only of eigenvalues A0 of finite algebraic 
multiplicities re(A0). 

Proos First observe that X[*]X is a finite rank perturbation of X*X. Therefore [Go, GoKr], 
a(X[*]X) \ [0, oo) is a discrete set in C \ [0, oo) with possible accumulation points only in [0, oo). 
Moreover, each of the points in a(X[*]X) \ [0, oo) is an eigenvalue of finite algebraic multiplicity. 

Since X[*]X is H-selfadjoint, the number of non real points in the spectrum of X[*]X is finite 
(see, e.g., [Bo]). Next we show that there are only a finite number of negative eigenvalues of 
X[*]X. Let A < 0 and x = x(A) ~ 0 be such that X[*]Xx = Ax. Then 

;,[x, x] = [X[*] Xx, x] = [Xx, Xx]. 

Since A < 0, there are three possibilities: (a) [x, x] = [Xx, Xx] = 0; (b) [x, x] < 0; (c) 
[Xx, Xx] < O. Denote 

r ,  = {,~ e o ( x t * l x )  n ( -or  0) : [z, ~] _< 0}, 

i.e., (a) or (b) holds for A E El. Also, denote 

E2 = {,~ e o (x t* lx )  n ( - ~ ,  0) : [x~, x~] _ 0}, 

so that (a) or (c) holds for A E E2. Then a(X[*]X) M ( -o0 ,  0) = E1 U E2 by the preceding 
paragraph. Next, we show that both E1 and E2 are finite sets containing at most ~ points each. 

It is well-known (and easy to check) that the vectors x(A1), �9 �9 �9 x(Aa) are linearly independent 
and H-orthogonal to each other, assuming that A1,-.. , Ak are distinct negative eigenvalues of 
X[*]X. Thus, if either (a) or (b) holds for every x(Aj), the subspace 

span {x(A1) , . . . ,  x(Ak)} 

is a k-dimensional H-nonnegative subspace, and therefore k < ~. On the other hand, the vectors 

X x ( ; ~ ) , . . - ,  Xx(A~) 

are also linearly independent and H-orthogonal (we continue to assume that A 1 , " "  , Ak are dis- 
tinct). Indeed, 

[Xx(A,),Xx(Aj)] = A,[x(Ai),x(Aj)] = O, (i # j )  

and if 

k 

Z ~jxx(Aj) = 0 (3.1) 
j = l  

for some c~j E C, then multiplying (3.1) by X[*] yields Y~=I ajAjx(Aj) = 0, and therefore a j  = 0 
in view of the linear independence of the vectors x (A1) , . . . ,  x(Ak). Thus, if (c) holds for every 
x(Ad) we obtain a k-dimensional H-nonnegative subspaee 

span {Xx(A1) , . . . ,  X x  (Ak) }, 

and hence again k _< ~. It follows that the number of negative eigenvalues of X[*]X cannot exceed 
2~. [] 
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A more careful analysis of the proof of Theorem 3.4 shows that the number of distinct eigen- 
values of X[*IX in (I \ [0, co) does not exceed 2n. In fact, the following better estimate holds: 

re(A0) < 2x. (3.2) 
Xo6a(Xt*lx)\[o,oo) 

Further analysis of  operators of the form X[*]X depends on the properties of the point 0 as a 
critical point of X[*]X, namely, whether it is a regular or a singular critical point. Let us recall from 
[Lan] the definition and properties of singular points of the operator A. Any selfadjoint operator 
on a Pontryagin space is definitizable, that is, there exists a polynomial p(z) ~ 0 such that p(A) 
is a nonnegative operator in the indefinite inner product. The set of critical points is then defined 
as the intersection of the set of real zeros o fp  with the spectrum of A. Denote by RA the semiring 
of all bounded real intervals with endpoints not in the set of critical points, together with their 
complements. Then there is a map A ~-+ EA from RA into the set of selfadjoint projections in the 
Pontryagin space inner product such that all the usual properties of a spectral function for A are 
satisfied (see Section II.3 in [Lan]). 

Critical points come in two kinds. Let a be a critical point, and let A0 < o~ and A1 > o~ 
be real numbers that are not critical points. If for any choice of A0, ,~1 we have that the limits 
limxr E([.Xo, A]) and limas= E([A, A1]) exist in the strong operator topology, then we say that a 
is a regular critical point. Otherwise c~ is called a singular critical point. These concepts are 
introduced and discussed in Section II.5 in [Lan]. It turns out that c~ is a regular critical point if 
and only if there is a neighbourhood b / o f  oe, with a the only critical point in L/, such that the 
spectral projections E(A) ,  with A C g/, are uniformly bounded in norm. In particular, this means 
that we can define the spectral projection of A corresponding to {c~}. Its image, called the spectral 
subspace of A associated with c~ and denoted ;OA (Ct), is the intersection of the ranges of E(A)  with 
c~ 6 A and A 6 RA. Note also that, for a regular critical point o~, the subspace 7~A(C 0 coincides 
with Ker ( a I -  A) k for a suitable integer k, and the H-inner product does not degenerate on 79A (a). 

In the next proposition a well-known canonical form for H-selfadjoint operators in finite di- 
mensional spaces will be used. For the reader's convenience, we recall this form. Denote by 

P Jp(A) the p x p upper triangular Jordan block with eigenvalue A, and by Zp = [6i+j,p+l]i.j=l the 
p x p matrix with ones on the southwest-northeast diagonal and zeros elsewhere. The notation 
diag (X1, �9 �9 �9 Xp) stands for the block diagonal matrix with the diagonal blocks X I , . .  �9 , Xp. 

Proposition 3.5 Let A 6 C ~ be G-selfadjoint, where G is an invertible Hermitian n x n matrix. 
Then there exists a nonsingular matrix S 6 C n, such that 

S -1AS  = diag(A1, . . . ,  Ak), S ' G S  = diag (Ga , . . . ,  G~), (3.3) 

where Aj, Gj are of the same size and the pair (Aj, Gj) has one and only one of the following 
forms: 

1. Blocks associated with real eigenvalues: 

Aj = Jp(A), and Gj =eZp, (3.4) 

where A 6 N, e 6 { 1, - 1}, and p depends on j. 
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2. Blocks associated with a pair of  nonreal eigenvalues: 

A j =  [Jp~A) jp(0.)] ,  and G j =  [~p ZOP ] (3.5) 

where A E C \ R and p depends on j .  

Moreover, the form (S-1A,-q ', ,,~*GS) of (A, G) is uniquely determined up to a simultaneous per- 
mutation of  blocks, and is called the canonical form of  (A, G). 

We are now in a position to state and prove the main result regarding existence of H-selfadjoint 
square roots of operators of the form XI*]X. 

Theorem 3.6 Let Z = X[*]X be an H-selfadjoint operator on a II~-space G that does not have a 
singular critical point at A = O. Then G can be decomposed H-orthogonally as 

= .Moo @ .M1 | .M2 69 .Ms, (3.6) 

where the subspaces Moo, All1, A/Is, and A43 are Z-invariant and have the following properties: 
Moo is finite dimensional and the restriction Zoo of Z to .3,400 is nilpotent, ./~1 is strictly H- 
positive and contained in the kernel of  Z, the restriction of  Z to .A~2 has its spectrum in [0, c~) 
and has trivial kernel, and ./~ s is finite dimensional and the restriction of  Z to .A~3 does not have 
spectrum in [0, cx~). Write [x, y] = (Hoox, y) for all x, y E Moo. Then there exists an H-selfadjoint 
operator A such that Z = A 2, if and only if the conditions O) and (ii) below are satisfied: 

(i) For each negative eigenvalue A of  Z the part of  the canonical form of  (Z, H) corresponding 
to A can be presented in the form 

(diag (A1,..., A,.~), diag (H1,...,  H,.~)), 

where for i = 1 , . . .  , m 

Ai = [Jk~ A) . _ , .  , H i  - -  ' 

(3.7) 

(ii) the canonical form of(Zoo, Hoo) can be presented in the form 

(diag (/30, B1,. . . ,  Bl), diag (Ho, H1,.. . ,  Ht)), (3.8) 

where/30 = 0ko• Ho = lpo @ -Ino, Po + no = ko, and for each i = 1 , . . .  , l  the pair 
(Bi, Hi) has one of  the following two forms: 

Jk,(O ' Hi = ' -Qk ,  ' - 

or o)] o] 
Jk,-l(0 ' Hi = ei Qa,-1 

with ei = •  and ki > 1. 
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Before proving Theorem 3.6 we need the following lemma. 

Lemma 3.7 Let Y be H-selfadjoint in II~, and let a(Y) = {0} (i.e., Y is quasinilpotent). Then 
Y is nilpotent and of finite rank. Moreover, the space 7-I admits an H-orthogonal decomposition 

= 7~o @ 7-ll such that 7-11 is in the kernel of Y, and ~o is Y-invariant andfinite dimensional. 

Proof. Let t~ be the number of negative squares of the Pontryagin space. We proceed by 
induction on t~. For n = 0 there is nothing to prove, as Y = 0 in the Hilbert space case. 

Let t~ > 0. Then there is a maximal Y-invariant H-nonpositive subspace. This subspace is 
finite dimensional, and non-zero. Thus there is an eigenvector of Y: Y z  = 0 for some non-zero 
vector z. Now either (Hz, :r) < 0 or (Hz, z) = O. 

In the formei case ~.c assume without loss of generality that (Hz,  z) = - 1 .  Put .Ado = 
span {z}. As .34o is H-nondegenerate we can decompose the space ~ as ~ = .A4o @ .A4[o • and 
with respect to this decomposition we have 

~ [o 1 o] 
where/ /2 is selfadjoint and invertible. Using the fact that Y is H-selfadjoint we see that a = 0, 
and 112 is Hz-selfadjoint. Moreover, cr(Y2) = {0}, and ,~(H2) = t~(H) - 1. So, by induction we 
get the conclusion of the lemma in this case. 

Now assume that (Hz, z) = 0. As ~ is H-nondegenerate there is a g such that (Ha;, V) = 1. 
Moreover, considering y + o~z in place of V, by a suitable choice of o~, we get that we can assume 
(Hy, V) = 0 without loss of generality. Put .A40 = span {a;, V}. Then .A40 is H-nondegenerate. 
Again, decompose the space ~ as ~ = M0 @ .A4[ -L]. With respect to this decomposition and the 
basis {z, V} in .Ado we write Y and H as 

[i1~ Y =  a2 , H =  0 , 
# Y2 0 / / 2  

where # E .A//~ -q and//2 is selfadjoint and invertible. Using the fact that Y is H-selfadjoint we see 
that ~ E R, 13 = 0, a2 = 0, al = (H2#)* and Y2 is Hz-selfadjoint. Thus 

Y =  0 . 

Next, we show that Y2 is quasinilpotent. Take A -~ 0. Then )ff - Y is invertible as well as 

A I 2 - [ 0  0 0 ] . I t f o l l o w s b y a S c h u r c o m p l e m e n t a r g u m e n t t h a t  

E0 [0o o]) -1 
is invertible. However, the latter is just AI - 112. So Y2 is quasinilpotent and H2-selfadjoint. Also 
t~(H2) = ~(H) - 1. Using the induction hypothesis we see that 112 is nilpotent and of finite rank. 
So Y is of finite rank as well. As Y is quasinilpotent and of finite rank it must be nilpotent. 
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It remains to prove the last part of the lemma. To see that this is true, first consider the image of 
Y. It is in general not H-nondegenerate, but we can extend it to a finite dimensional subspace .Mo 
that is H-nondegenerate. It is obviously Y-invariant as it contains the image of Y. With respect to 
the decomposition .M0 @ .M~ • write the operators Y and H as 

y~__ [~1 ~2] , H= [H011 /./221 . 

As .Mo is H-nondegenerate n i l  is invertible. We have only to show that II12 = 0. To see this note 
that for x E .M~• and for any z we have 

(HYx ,  z) = (Hx, Yz)  = O, 

as Y z  is in the image of Y and hence in .Mo. This shows that Y12 = O. This proves the lemma. [] 

Proof of Theorem 3.6. Let Z be an H-selfadjoint operator on rI,~ satisfying the conditions of 
Theorem 3.6. Then there exists an H-orthogonal decomposition of II,~ reducing Z such that 

Z = Zo @ Z2 @ Z3, (3.9) 

where Z0 is quasinilpotent and defined on the spectral subspace .M0 of Z corresponding to the 
spectral point at A = 0, a(Z2) C [0, co) and KerZ2 = {0}, and a(Zz) D [0, oc) = @ (see Theorem 
5.7 in [Lan]). 

As the decomposition reducing Z in (3.9) is H-orthogonal, with respect to the same decomposi- 
tion we can write H ---- Ho � 9  @//3. Then__ Zo is_Ho-selfadjoint and quasinilpote_vnt. Thus, accord- 
ing to Lemma 3.7 we may write .Mo = .Moo @ .M1, where .M1 C Ker Zo and .Moo is Zo-invariant 
and finite dimensional. Then .M1 is H0-nondegenerate, and we can split it as .M1 = .M01 | .M1, 
where .Mol is strictly Ho-negative and .M1 is strictly Ho-positive. Obviously, .Moi is finite di- 
mensional. Now put .Moo = .Moo @ .Mol. Then .Moo is Zo-invariant (as .M01 C KerZo) and 
finite dimensional, and .M~ is Ho-positive and is contained in KerZo. Clearly, representing the 
indefinite inner product on .Moo by Ix, y] = (Hoox, y) for x, y E .Moo, we have the decomposition 
as described in the first paragraph of the theorem. Further, Theorem 3.4 implies that Z3 is defined 
on a finite dimensional subspace .M3 whose inner product is represented by [x, y] = (Ha:r, y) for 
x, y C .Ma. 

We verify next that if Z = A 2 for some H-selfadjoint operator A, then A also does not have a 
singular critical point at A = 0. Indeed, otherwise []EA[--a, a]x][ --+ oc as a -+ 0, where EA is 
the spectral function of A. Since by the functional calculus we have Ez[0, a 2] = EA[--a, a] for 
o~ > 0, it follows that [[Ez[0, a2][[ ----roe as a -+ 0, which is a contradiction with Z not having 
a singular critical point at A = 0. Now by repeating the above decomposition for A rather than 
for Z,  we conclude, as in the finite dimensional case (see [BMR31]), that if Z = A 2 for some 
H-selfadjoint A, then conditions (i) and (ii) hold. 

Conversely, suppose that (i) and (ii) hold. Then the canonical form of (Zoo, H00) is as in 
condition (ii) of Theorem 3.6, while at the negative eigenvalues the canonical form of (Z3, Ha) is 
as in condition (i) of Theorem 3.6. Now write Z3 = Z_ @ Zn,. with Z_ defined on .M_ where 
a(Z_) C ( - c~ ,  0) and a(Z,~,.) D R = @, and represent the inner product induced by H on .M_ by 
[x, y] = (H_x, y) for x, y e .M_. 
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The proof of the existence of an H00-selfadjoint square root of Zoo and an H_-selfadjoint 
square root of Z_ now is identical to the proof of Theorem 4.4 of [BMR31] with the following 
modifications: one replaces (X[*]X, H) by (Zoo @ Z3, Hoo @//3) (the special form X[*]X does not 
play any role), and one disregards the part of this proof involving condition (iii) of Theorem 4.4 of 
[BMR31]. Obviously, once Zoo has an H-selfadjoint square root, so has Z0, by just extending it 
with 0. 

Denoting the closed subspace on which Z2 is defined by .A,42 and representing the indefinite 
inner product on .M2 by [x, y] -- <H2x, y) for x, y E .M2, it remains to prove the existence of an 
H2-selfadjoint square root of Z2. If Z does not have any nonzero singular critical points, one has 
the spectral representation 

t *  

Z2 = ] t E(dt) 
J(o ,oc ) 

for some bounded H2-selfadjoint spectral measure E(.) supported on [0, eo) [Bo, IKL]. In that 
case, an H2-selfadjoint square root of Z2 is given by 

A2 = fo,oo) v~ E(dt). 

On the other hand, if Z2 is boundedly invertible (which means that or(Z) N (0, ~) = {3 for some 
> 0), an H2-selfadjoint square root of Z2 is given by 

1 fv V'A (/kI - Z) -x dA, (3.10) A2 = ~ /  

where 1-' is a simple closed rectifiable Jordan contour having winding number one with respect 
to any point of a(Z) N (0, oo) and winding number zero with respect to any of the finitely many 
points of a(Z) \ (0, oe). Equation (3.10) is also valid if Z has nonzero singular critical points and 
a(Z) N (0, ~) = 0 for some 5 > 0. Finally, if neither situation occurs, there exists 5 > 0 such 
all nonzero singular critical points of Z are contained in (2~, oo). Using the spectral measure E(.) 
of g on (0, 2~] and a closed rectifiable Jordan contour having winding number one with respect 
to any point of a(Z) f7 (2~, oe) and winding number zero with respect to any of the finitely many 
points of a(Z) \ (0, oo), one finds the following expression for an H2-selfadjoint square root of 
Z2: 

f(o 1 fr v ~ ( M -  Z+)-l dX A2 = V~ E(dt) + 
26] 

This completes the proof. [] 

I f  A = 0 is  a singular critical point of Z, the proof of Theorem 3.6 breaks down, because one 
can no longer single out a spectral subspace of Z corresponding to the spectrum at A = 0. The 
next example due to H. Langer [Lan], however, shows that many H-selfadjoint operators on a 
Pontryagin space with a singular critical point at A = 0 still have an H-selfadjoint square root. 

Example3.8Let~=L2([O, 1])@C2, H=I@[~ ~1, and consider the operator 

z =  ~<. > 0 I ez:(G), 
0 
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where z E C \ {0} and Mt is the operator of multiplication by the function f ( t )  = t. The operator 
Z is H-selfadjoint, a(Z) = [0, 1], and Z = A 2, where 

[Mv~ 0 z i l  ] 
A =  [2(~1) 00 

is H-selfadjoint with a(A) = [0, 1] for any a 6 R. Zero is a singular critical point of both Z and 
A. 

The spectral properties of operators of the form X[*]X described in Theorem 3.4 are not suf- 
ficient to guarantee the existence of an H for which the operator is of this form, as the following 
example shows�9 

Example 3.9 Let V be the Volterra operator 

f0 t ( V f ) ( t )  = f (u)du ,  f e L2([O, 1]). 

Consider the operator 

z = + i v  = + v ' )  + �89  + v*) ,  

where a > 0 is chosen so that a I  + ~(V - V*) is positive definite (any a > I will do). It is well- 
known that V + V* has rank one. Thus, Z is a rank one perturbation of a positive definite operator. 
Nevertheless, Z is not H-selfadjoint for any H (selfadjoint, invertible, and with finite dimensional 
spectral subspace corresponding to the negative part of a(H)) .  Indeed, V, and therefore also Z, 
has no (nonzero) finite dimensional invariant subspaces (see [GoKr]). However, by Pontryagin's 
theorem (see [Bo, IKL]) every H-selfadjoint operator has a R-dimensional invariant subspace. 
Also, Z is not H-selfadjoint for any positive definite H, because Z is unicellular, and on the 
other hand, by the spectral theorem no selfadjoint operator is unicellular (unless it acts on the 
one-dimensional space). 

We conclude this section with a side result concerning logarithms of H-selfadjoint operators. 
It was proved in [LMMR] that in finite dimensions an invertible H-selfadjoint operator has an H- 
selfadjoint square root if and only if it has an H-selfadjoint logarithm. The same result is true in 
infinite dimensions, in both the complex and the real case: 

Theorem 3.10 Let Z be an invertible H-selfadjoint operator. Then Z = A 2 for some H-selfadjoint 
A if and only if there exists an H-selfadjoint B such that Z = e n. 

Proof. By Theorem 3.4, a(Z)  \ [0, c~z) is a finite set consisting only of eigenvalues with a 
finite algebraic multiplicity. The spectral subspace ~_ of Z corresponding to the negative eigen- 
values coincides with the spectral subspace of A corresponding to its purely imaginary eigenval- 
ues, which is finite dimensional. By the finite dimensional analysis in [LMMR], there exists an 
HIg_-selfadjoint logarithm of Z[a_. On the H-orthogonal companion of G-, which is the spectral 
subspace of Z corresponding to a(g) \ (-oo, 0], the Hlgt..Lj-selfadjoint logarithm exists by the 
functional calculus. Putting the two logarithms together, we obtain an H-selfadjoint algorithm of 
Z. [] 
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4 Polar decompositions revisited 

In this section we present our main results concerning polar decompositions. As in the preceding 
section, we consider here the complex case only. 

Theorem 4.1 Let X be such that the range o f  X is closed, and the operator Z = X[*Ix does not 
have a singular critical point at A = O. Then there exists an H-polar decomposition X = UA o f  
X i f  and only i f  the conditions (i) and (ii) in Theorem 3.6 are satisfied and in addition the following 
condition holds: 

�9 l s l  (iii) there is a decomposition as in condition (ii) and there is a choice o f  basts { eid } i=Oj=l, where 
so = ko and si is the order of Bi for i > O, in .Moo with respect to which (ii) holds and for  
which we have 

KerX = .A,41 @ span{ei.1 + ei, k,+ll si = 2ki, i = 1 . . . .  , m}  @ 
ko @ span{ei,ll si = 2ki - 1, i = m + 1 , . . .  ,l} $ span {eod}j=l, 

where .Moo and A/l~ are defined in Theorem 3.6. 

Proof. The "if" part. Assume conditions (i) - (iii). With no loss of generality, we assume that 
the space .h//1 is srtrictly H-positive and the vectors cod (3 = 1 , . . .  , k0) are H-negative. Now, we 
reduce Z: 

Z = Zoo e O ~ Z2 e Za 

with respect to the H-orthogonal decomposition (3.6), where Zoo is nilpotent and defined on the 
finite-dimensional subspace M00, .M1 C_ KerX,  a(Z2) C [0, +o~) and KerZ2 = {0}, and 
a(Zz) N [0, o~) = 0. Note that dim.Adz < oo. 

We now refine the decomposition (3.6), by obtaining a further decomposition of.M2. Let/ /2 be 
the unique invertible selfadjoint operator on .Mz such that ix, y] = (H2x, y) for all x, y E .M2. We 
denote by E the spectral function of Z2 as an H2-selfadjoint operator. There are two possibilities: 
either 0 is not a critical point of Z2, or 0 is a critical point of Z2 (in the latter case the critical point 
0 must be regular, as follows from the construction of the spectral function given in [Lan]). If 0 
is not a critical point of Z2, then, by definition, Im E[0, r is either strictly H2-positive, or strictly 
H2-negative, for all 6 > 0 small enough. If 0 is a critical point of Z2, then by Proposition 5.3 in 
[Lan] there exists a definitizing polynomial for Z2 that has a simple zero at 0. By the properties of 
the spectral function (Theorem 3.1(4) and the remark after Theorem 5.7 in [Lan]) we have again 
that Im E[0, 6) is either strictly H2-positive, or strictly H2-negative, for all 6 > 0 small enough. 
(We also use here the fact that E(0) = 0, as Ker Z~ = {0}.) 

Next, suppose Im ~'[0, 6) is strictly H2-negative for all 6 > 0 small enough. Then Im E[0, 6) 
is finite dimensional, and since Ker Z2 = {0}, it follows that Im/~[0, 6) = {0} for all 6 > 0 small 
enough. In this case, we put Adz, = {0}. Otherwise, if Ira El0, ~i) is strictly H2-positive, we put 
.h42, = Im El0, 6) for 6 > 0 sufficiently small, and let Ad~ = Im ff2[~, oo). Write Z~ as a direct 
sum Z2 = Z2c �9 Z2, corresponding to the H-orthogonal decomposition 

M2 = M2~ @ M2~, (4.1) 
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where, by construction of .M2, and .M2c, Z~c has its spectrum bounded away from zero, and Z2, 
is defined on a strictly H2-positive subspace .M2,. Note that every strictly positive subspace in a 
Pontryagin space is uniformly positive (see [IKL] for a proof): If [z, z] > 0 for every non-zero z 
in a subspace Q of a Pontryagin space, then there exists e > 0 such that [z, z] > cllzll 2 for every 
z ~ Q. Thus, [x, z] >__  llzrl 2 for every z E .A't2,, where e > 0 is independent of z. 

Put .N'2 = X[.A42], and A/'a = X[.M3]. Then .A/'3 has the same dimension as M a ,  and is H -  
nondegenerate. Indeed, suppose that .Afa is H-degenerate. Then there is a nonzero z E .A4a such 
that [Xx, Xy] = 0 for all y E .Ma. So 0 = [Xx, Xy] = [X[*Ixz, y] = [Zx, y] for all y E .Ma. As 
Zx E .Ma and M 3  is H-nondegenerate, it follows that gx = 0. However, as or(Z3) 71 [0, cx~) = r 
we would get x = 0, which is a contradiction. The subspace .N'2 is closed (because X is assumed 
to have closed range), and is H-nondegenerate (the proof is analogous to the above proof of H -  
nondegeneracy of.A/j). Introduce also the subspaces.A/2c = X[.M2c] and A/'2, = X[.M2s]. 

Notice that each of the three subspaces .M2c, .A42s, and .Ma has the same number of negative 
squares (with respect to the indefinite inner product induced by H )  as the corresponding subspace 
A/'2~, .Af2,, or A/'3. Let us verify this. For x, y E .Ma we have [Xz, Xy] = [Zax, y], where Za = 
Z]Ma, and therefore the number of negative squares of M a  with respect to H is equal to that of 
.M3 with respect to HZa. Now by condition (i) of Theorem 3.6, the number of negative squares 
of H on Afa is equal to the number of negative squares of H on M a ,  and the same thing holds 
for HZa. As for .M2~, notice that .M2, is a Hilbert space (with respect to the H-indefinite inner 
product). The equality 

[Xz, Xv] = [Z2,~, y], z, V e .M2s 

shows that the number of negative squares of H on.M2, is equal to the number of negative squares 
of HZ2, on .M2~. But since .M2, is a Hilbert space and a(Z2~) C [0, oo), the number of negative 
squares of HZ~, on .M2, is zero, which is equal to the number of negative squares of H on .M2~. 
For .M2~, the verification is analogous. 

Recall that (Zoo, Hoo) has the representation (3.8), where H00 -- - Iko;  the latter is because the 
vectors eo,j, (j = 1 , . . . ,  k0) in the description of K e r X  are all H-negative. Then we easily see 
that the vectors 

Xei,2,... ,Xei.k~;Xei,k~+2,... ,Xei,2k~;X(ei,1 -ei,k~+l) for i = 1 , . . .  , rn 

together with the vectors 

(4.2) 

Xei,2,... ,Xei.2k,-1 for i = m +  1 , . . .  ,1 (4.3) 

form a basis of X[M00]. The Gram matrix of the set (4.2) (with respect to the indefinite inner 
product induced by H )  has the form Qk~-i @ -Qk~-i  @ 01• while the Gram matrix of the set 
(4.3) has the form ei(Qk~-i @01• 1 GQk/-2). AS a result, X [.Moo] has an isotropic part of dimension 
l, has I positive squares less than .Moo, and has k0 + l negative squares less than Moo. Now let 
j r  be a subspace of g (necessarily of dimension l) that is skewly linked to the isotropic part of 
X[.M0o] and is contained in the H-orthogonal companion of.M2 @ .M3. Define 

Hoo = x [ . M o o ] 4 j r .  

Then .Moo and .Moo are both H-nondegenerate subspaces and have the same number of positive 
squares (with respect to the H-indefinite inner product); however, .Moo has ko more negative 
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squares than .A/'00. We denote by `Moo the linear span of the vectors ei,j (.j = 1 , . . .  , si; i = 
1, . . .  ,l). 

Let us now define an H-isometry U as follows. Clearly, there exist H-isometries 

Voo : .A/'oo "-+ `Moo, Vu~ : A/'uc --+ `Muc, V2, : A/'2, --+ `M2~, and �89 :N'3 --+ `M3, 

all of which are onto. We then define the surjective H-isometry 

V=Voo(9 �89 189  : A;oo (gA/'2,(gA;2, (gAr3 ~ M oo (9 `M 2c (9 `M 2, (9 `M 3 . 

kO The H-orthogonal companions of the domain of V and of the subspace span {eod}j=l (9 .A/[1 are  
again II,, o spaces with no _< ~. We have then defined an H-isometry on a closed H-nondegenerate 
subspace containing Im X. 

We shall construct an H-polar decomposition of V X  by giving H-polar decompositions of the 
restrictions of V X  to its invariant subspaces `Moo, ̀ M2c, ̀ M2,, `M3, and `M1. Combining these 
H-polar decompositions in a direct sum manner, we will arrive at an H-polar decomposition of 
V X .  

Let (VX)oo be the restriction of V X  to its invariant subspace `Moo. Then conditions (i) - 
(iii) and a finite dimensional result in [BMR31] imply the existence of an H-isometry Woo and an 
H-selfadjoint Ao0 on `Moo such that (VX)oo = WooAoo. 

Decompose (VX)2 (the restriction of V X  to `M2) as (VX)2 = (VX)2~ (9 (VX)28, according 
to (4.1). Then (VX)2 has the H2-polar decomposition 

(V X)2 = W2~A2, (9 Wz,A2,, 

where W2~ = (VX)2r and where (VX)2s = Wz,A2, is the usual polar decomposition on the 
Hilbert space `M2~ (endowed with the inner product (H~., .)). 

On .Adz, we obtain by conditions (i) - (ii) and the finite dimensional result in [BMR31] that 
(VX)a = W3Aa, where Wa is an Ha-isometry, and Aa is Ha-selfadjoint. 

We now put together the various polar decompositions above to arrive at the representation 

(VX)oo (9 (VX)2 (9 (VX)a = [Woo (9 W2 (9 Wa] [Aoo (9 A2 (9 Aa] 

as an operator on `Moo @ ̀ M2 (9 .Ms. Now let U be the H-isometry defined on Im A by 

u=v-'[WooeW, eW,] : .Uooe`M2 e`M3 ---> ~'oo e J% ~ N , .  

Then X = UA is an H-polar decomposition of X. 
The converse part. Let X = UA be an H-polar decomposition of X. Then there exist H-  

orthogonal H-nondegenerate subspaces `Moo, `M1, `M2 +, `M+2c, ̀ M2, and `M,~r, with respect to 
which A decomposes as follows: 

A =  Aoo@O| @A,~r , 

and the subspaces and operators involved have the following properties: 

(a) dim.Moo < oo and Aoo is nilpotent; 
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(b) .M1 is strictly H-positive; 

(c) .M+, is strictly H-positive, a(A+a) C [0, oo), and Ker A+a = {0}; 

(d) d imM+c < oo and a(A+c) C (0, oo); 

(e) dim.M~- < oo and a(A~)  C ( -oo ,  0); 

(f) dim.M,~ < oo and a(A,~) N R = O. 

Here we have used the fact the zero is not an irregular critical point of A (it follows from the 
construction of the spectral function in [Lan] that if zero is not an irregular singular point of an H -  
selfadjoint operator Z which is the square of an H-selfadjoint operator A, then tile operator A also 
doesn't have an irregular critical point at zero). Next, put.Afoo -- U[.Moo]; then .Af00 and .Moo have 
the same numbers of positive and negative squares (with respect to H),  due to the H-isometric 
property of U on Im A. So there exists an H-isometry mapping.N'o0 onto .Moo. 

Applying the finite dimensional H-polar decomposition result [BMR31] to V0oXL~oo, there 
exists a basis {eid : i = 0 , . . .  , l; j = 0 , . . .  , si} of.Moo with respect to which Ker A has the form 

KerA = Ker (VooXl~oo) = span{ei,1 + ei, k,+l[ si = 2ki, i = 1 , . . .  , m} | 
ko @ span{ei,ll si = 2ki - 1, i = m +  1 , . . .  ,l} @ span {eod}j=l, 

whereas the canonical form of (A 2, H00) is of the type (3.8) (here H00 is the Hermitian matrix that 
produces the H-indefinite inner product on .Moo). Hence, since Ker X = Ker A, the subspace 
Ker X satisfies the condition (iii) of Theorem 4.1. Conditions (i) and (ii) follow directly from the 
existence of an H-selfadjoint operator A such that Z = X[*]X = A 2, upon applying Theorem 3.6. 
[] 

Easy examples (for example, the backward shift in a Hilbert space) show that under the hy- 
potheses of Theorem 4.1 the operator X that admits an H-polar decomposition need not admit an 
H-unitary H-polar decomposition. An additional hypothesis is used in the next theorem to guar- 
antee an H-unitary H-polar decomposition (provided the criterion for the existence of an H-polar 
decomposition is fulfilled): 

Theorem 4.2 Let X be as in Theorem 4.1, and assume in addition that the dimension ofKer  X is 
equal to the codimension of  lm X (in particular, this condition is satisfied if X is Fredholm with 
index zero). Then X admits an H-unitary H-polar decomposition if  and only if  the conditions (i) 
and ( ii) of  Theorem 3.6 and the condition ( iii) if Theorem 4.1 are fulfilled. 

Thus, Theorem 4.2 represents an imme.diate generalization of the finite dimensional results on 
existence of H-polar decompositions obtained in [BMR31]. 

Proof. If X = UA for an H-unitary operator U and an H-selfadjoint operator A, and X has 
closed range, then 

codim Im X = codim Im A = dim Ker A = dim Ker X. 
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Conversely, if the conditions (i) and (ii) of Theorem 3.6 and the condition (iii) of Theorem 4.1 
are satisfied and X has closed range, there exists an H-isometry U on Im A such that X = UA. 
Ac... ~ally, following the proof of  the "it"' part of Theorem 4.1, we construct an H-isometry U on 
�9 Moo @ .A42 @ .M3 which has .Moo ~) A/'2 �9 .A/'3 as its range. Now note that the H-orthogonal 
companion of the former subspace is span {e0d}jk~ 1 ~ .Mi, which is a closed subspace of Ker X 
of codimension I. On the other hand, Im X is a closed subspace of.M00 @ A/'2 @.N'3 of codimension 
I. Since the dimension of Ker X equals the codimension of Im X,  we have 

e '~ko dim [span { 0, / l j : l  @ .,/~1] = codlin (.Moo @ .M2 ~ A/'3). 

ko Further, span {eo,j }j=l ~ , / ~ 1  iS H-nondegenerate with ko negative squares, whereas.Moo @.A/'z @.M3 
is H-nondegenerate with n - ko negative squares..._.The latter is immediate, since .N'oo, .A/'2 an....d A/'3 
have the same number of negative squares as .Moo, .M2 and .M3, respectively, while .Moo @ 
.M2 ~.A,43 is ko the H-nondegenerate H-orthogonal companion of span {e0,j }j=i @.MI. As a result, 
there exists an H-isometry mapping span {e0~/}~~ @ .Mi onto the H-orthogonal companion of 
.Moo @.A/'2 ~ Af3. This H-isometry then allows us to extend U to an H-unitary operator on all of ~. 
Consequently, for this U, X = UA is an H-unitary H-polar decomposition of X.  [] 

For some particular classes of operators, existence of H-polar decompositions can be obtained 
by entirely different means than the general criteria of Theorems 4.1 and 4.2. We present one such 
result concerning H-normal operators. An operator X is called H-normal if XX[*] = X[*]X. 

Theorem 4.3 I f  X is an invertible H-normal operator such that the spectrum of  X does not sur- 
round zero, then X has an H-normal logarithm, and therefore admits an H-unitary H-polar de- 
composition X = UA with commuting factors U and A. 

The proof is essentially the same as in the finite dimensional case (see [LMMR]), and is there- 
fore omitted. 

Theorem 4.3 is valid for the complex case only. A general description of all H-normal opera- 
tors that have H-normal logarithms is an open problem in the real case even in finite dimensions. 
Partial results in this direction are found in [LMMR]. In connection with Theorem 4.3, note that 
there exist H-normal operators that admit an H-unitary H-polar decomposition but do not admit an 
H-polar  decomposition with commuting factors (see [LMMR] for a finite dimensional example). 

5 The real case 

It is convenient to recast the real case, i.e., the case of linear operators in a real II,, space, using the 
notion of a semilinear involution on a complex Hilbert space. We say that a function K that maps 
a complex Hilbert space ~ into itself, is a semilinear involution if K 2 = I and 

K ( x  -+ y) = K(x )  § K(y) ,  K(ax)  = ~x, (Kx,  Ky )  = <x, y> 

for all x, y E G and all a E C. We assume that a fixed semilinear involution K is given on ~. 
A linear operator A in the complex space is called real (more precisely, K-real) if A K  = KA.  

It is easy to see that this definition is equivalent to the standard definition of operators on a real 
Pontryagin space, after a complexification. It follows that i fA  is K-real  then so is A*. 
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Now let H be an invertible selfadjoint operator which is also K-real. Then A[*] = H-aA*H 
is K-real  whenever both A and H are K-real. Further, if H is K-real and A is H-selfadjoint with 
spectral function A ~ EA, then K A K  is H-selfadjoint with spectral function A ~ K E A K .  In 
particular, it follows from the uniqueness of the spectral function of an H-selfadjoint operator that, 
if H is K-real,  the spectral function of a K-real  H-selfadjoint operator is K-real. 

A subspace .M C G will be called K-real if K x  E .M for every x E .M. 
With these definitions, it is now a routine matter to extend the results of this paper concerning 

operators of the form X[*]X, selfadjoint square roots, polar decompositions, and their proofs, to 
the real case (with the exception of Theorem 4.3). As an example, we formulate the real version 
of Theorem 3.6. 

Theorem 5.1 Let K be a semilinear involution on a II~-space ~ defined by a K-real invertible 
selfadjoint operator H. Assume that X is K-real, and assume that Z = X[*]X does not have a 
singular critical point at A = O. Then G can be decomposed H-orthogonally as 

= .Moo �9 .M1 @ -M2 @ .M3, (5.1) 

where the subspaces .Moo, .M1, .M2, and .Ma are Z-invariant, K-real and have the properties 
described in Theorem 3.6. Furthermore, there exists an H-selfadjoint K-real operator A such that 
Z = A 2, if and only if the conditions (i) and (ii) of Theorem 3.6 are satisfied. 

We also formulate the real versions of Theorems 4.1 and 4.2. 

Theorem 5.2 Let H, X and Z = X[*]X be as in Theorem 5.1. Assume also that the range of X 
is closed. Then X admits a real H-polar decomposition if and only if the conditions (i) and (ii) of 
Theorem 3.6 and the condition (iii) of Theorem 4.1 are satisfied. 

Theorem 5.3 Let H, X and Z = X[*IX be as in Theorem 5.1. Assume also that the range of X 
is closed. Then X admits a real H-unitary H-polar decomposition if and only if the conditions (i) 
and (ii) of Theorem 3.6 and the condition (iii) of Theorem 4.1 are satisfied, and the dimension of 
Ker X is equal to the codimension ofIm X. 

For the proofs observe that by Lemma 4.2 of [BMR31], in the finite dimensional case with H 
real, a real matrix X has a complex H-polar decomposition if and only if X has a real H-polar  
decomposition. Using this observation, and the fact that the decompositions (5.1) and (4.1) can 
be implemented using K-real subspaces only, the proofs of Theorems 4.1 and 4.2 carry through 
under the hypotheses of Theorems 5.2 and 5.3. 
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