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ABSTRACT 

In this review paper, the generalized Schrodinger equation d21/J/dX2 + kll/J = [ikP(x) + 
Q(x)]1/J is considered, where P(x) and Q(x) are real, integrable potentials with finite first 
moments. The scattering solutions and the bound state solutions are studied, the scattering 
coefficients and their small-k and large-k asymptotics are analyzed. Unless P{x) :s; 0, it is shown 
that there may be bound states at complex energies, degenerate bound states, and singularities 
of the transmission coefficient for real k. Some illustrative examples are provided. 

1. INTRODUCTION 

In this paper we are interested in analyzing the scattering problem for 

-1/J+I1(k,x) + [ikP(x) + Q(x)]I/J+(k,x) = ~1/J+(k,xJ, XER, (l.l) 

where R is the real line, the prime denotes the derivative with respect to x, k is a complex 
parameter, and P(x) and Q(x) are real-valued functions such that p, Q E LI (R). By LI (R) 
we denote the Lebesgue-measurable functions!(x) such that 11f11t,1 is finite, where 11f11t,1 = 

t:oodx(l + Ixl) If(x) I· Most of our results are valid under the weaker assumptions p, Q E LI (R), 
and the first moments are needed only when we consider (1.1) near or at k = O. The reason for 



:2 Aktosun et al. 

us to use the superscript plus in (1.1) will be apparent in Section 3: Associated with (1.1) is 
the related equation (3.1), where the superscript minus appears. 

There are several reasons why the analysis of (1.1) is important. In quantum me­
chanics, (1.1) describes the behavior of a particle of momentum k and energy Jil interacting 
with the energy-dependent potential ikP(x) + Q(x). In this case I/I+(k,x) corresponds to the 
wavefunction. Moreover, in the frequency domain, (1.1) describes the wave propagation 
in a one-dimensional medium where P(x) represents energy absorption or generation in the 
medium and Q(x) is the restoring force density. In this context, the time-domain analog of 
(1.1) is given by 

iPu iPu au 
ax2 - at2 -P(x) at = Q(x)u, t,XER, 

where the wave speed is equal to 1. When P(x) ~ 0, there is net absorption; however, unless 
otherwise stated we will not put any restriction on the sign of P(x). 

The scattering states of (1.1) correspond to its solutions behaving like eikx or e-ikx as 
x -t ±oo for k E R. As indicated in Section 2, such solutions can be extended continuously 
and analytically in k to the upper-half complex plane C+. If at a certain k-value in C+ such 
solutions decay exponentially as x -t ±oo, we obtain a bound state. A bound state of (1.1 ) 
corresponds to a nontrivial solution belonging to L2(R). 

When P(x) == 0, (1.1) is reduced to the usual SchrOdinger equation 

xER. (1.2) 

When Q E Ll(R), the scattering theory for (1.2) is well understood. Let us use N(P'Q) to 
denote the number of bound states (including multiplicities) of (1.1 ); hence N( 0, Q) denotes the 
number of bound states of (1.2). When Q ELI (R) there may be infinitely many bound states of 
(1.2) all having negative energies accumulating at zero, but each bound state is simple. When 
N(O,Q) is finite, we let k = iKj forj = 1,··· ,N denote the corresponding momentum values 
with 0 < Kl < ... < /<N. If Q E LI (R), it is assured that N(O,Q) is finite. Since P(x) is real, 
unless P(x) == 0, (1.1) is a non-self-adjoint equation and there may be complex eigenvalues, 
i.e. values of ~ at which there exist solutions belonging to L2(R). Furthermore, (1.1) may 
also have eigenvalues that are not simple. Some examples of complex or multiple eigenvalues 
will be given in Section 8. 

This paper is organized as follows. In Section 2 we consider the Jost solutions of (1.1 ), 
i.e. certain scattering solutions in terms of which the scattering coefficients are defined. In 
Section 3 we study the scattering coefficients and some of their properties. Section 4 is about 
the large-k and small-k asymptotics of the scattering coefficients. In Section 5 the bound 
states of (1.1) are considered, some estimates are obtained on the number of bound states, 
and a Levinson theorem is presented relating the number of bound states to the argument of 
the transmission coefficient. In Section 6 we show that the negative-energy bound states of 
(1.1) can be analyzed in tenos of the eigenvalue branches of the operator 013 defined in (6.1). 
Section 7 is devoted to the connection between the zeros of the Jost solutions of (1. 1) and the 
bound states. In Section 8 we present various examples illustrating the theory contained in 
the prior sections. Finally, in Section 9 we conclude with a brief summary of some inverse 
scattering problems for (1.1 ). 

Since this is a review paper, no proofs are included. For proofs and further details, we 
refer the reader to [1] and the references therein. 
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2. SCATTERING SOLUTIONS 

Among the scattering solutions of (l.l), we have the Jost solution from the leftJ;t(k,x) 
and the Jost solution from the rightJ1(k,x) satisfying the boundary conditions 

r+ -lex 
J[ (k,x) = e' +0(1), J;t'(k,x) = ikfllex +0(1), x ~ +00, (2.1) 

.r;:'(k,x) = -ike-ilex+o(l), x~ -00. (2.2) 

These solutions satisfy 

r+ 1 ilex L+(k) -ilex 
J[ (k,x) = T+(k) e + T+(k) e +0(1), (2.3) 

(2.4) 

where r+ (k) is the transmission coefficient, and R+ (k) and L + (k) are the reflection coefficients 
from the right and from the left, respectively. Let [F; G] = FG' - F' G denote the Wronskian. 
Note that the same transmission coefficient appears in both (2.3) and (2.4); this is because 
[t((k,x)J;:f"(k,x)] is independent of x, and the values of that Wronskian atx = ±oo show that 
the transmission coefficient from the left is the same as the transmission coefficient from the 
right. 

Define the Faddeev functions from the left mt(k,x) and from the right mt(k,x) as 

+ -ilcxr+ m[ (k,x) = e J[ (k,x) , + -Iexr+ mr (k,x) = e' Jr (k,x). 

By C+ we denote C+ U R. In the next theorem we show that, for each fixed x, the Jost solutions 
can be analytically extended to C+ . 

Theorem 2.1. Assume P, Q E LI (R). Then,for each x E R. the functions mt(k,x). mt(k,x). 
mt'(k,x). and mt'(k,x) are analytic in C+ and continuous in C+ \ {OJ. Similarly,for each 
x E R, the functions.rt (k,x ).J1 (k,x ) • .rt' (k,x). and J1' (k,x) are analytic in C+ and continuous 
in C+ \ {OJ. Moreover, we have 

kE C+\ {OJ, 

kE C+\{O}, 

where C is a constant independent of x and k_ If we further assume Q E Ll (R). then the 
Faddeev functions. the Jost solutions. and their x-derivatives are continuous at k = 0 as well. 
In this ca~e, for k E c+ we have 

Imt(k,x) I ~ C[I +max{O, -x}], Im~(k,x)1 :::; C[l + max{O,x}] , 

Imt'(k,x)l:::; C[l + /k/HI +max{O,-x}], Im~'(k,x)1 ~ C[l + Ikl][l +max{O,x}]. 
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Theorem 1.1. Assume P,Q E Ll(R). For each k E C+, the quantities mt(k,x), m;-(k,x), 
mt'(k,x), and mJ'(k,x) are bounded and continuous, and we have 

+ { 1 +0(1), x -+ +00, 
m[ (k,x) = r+'w+o(l), x-+-oo, 

m+(kx)={ ~+0(1), x-++oo, 
r' 1 + o( 1 ), x -+ -00, 

mt'(k,x) = 0(1), m;'(k,x) = 0(1), 

mt'(k,x) = 0(1), m;'(k,x) = 0(1), x-+ -00. 

Proposition 1.3. AssumePELl(R) andQELI(R). Then,.ti(O,x) andJj(O,x) are deter­
mined by Q(x) alone, and we have 

.ti(O,x) = .t}°)(O,x), (2.S) 

Generically.t}°) (O,x) andflO) (O,x) are linearly independent, but in the exceptional case 
these two functions are linearly dependent [2-4]. From Proposition 2.3 we see that Q(x) alone 
detennines whether we are in the generic or exceptional case. In the exceptional case, let us 
define 

riO) 
Ji (O,x) 

y= riO] . 
H (O,x) 

(2.6) 

Then yis a real, nonzero constant detennined by Q(x) alone, and we have 'Y= .t101(O, -00) and 
",(0) 

y= liN (0,+00). 
The transfonnation k t-+ -k in the complex plane is a reflection with respect to the 

imaginary axis, where the overline denotes complex conjugation. Under this transfonnation, 
we have ik t-+ ik and 

ff( -k,x) = Jt-(k,x), C( -k,x) = ff(k,x), kEC+. (2.7) 

Hence, for real k, we get 

ff( -k,x) = ff(k,x), C( -k,x) = /f(k,x), kER. 

3. SCATTERING COEFFICIENTS 

The transmission coefficient T+(k) given in (2.3) and (2.4) can also be defined in tenns 
of a Wronskian of the Jost solutions of (1.1). However, this is not true for the reflection 
coefficients. In order to write the reflection coefficients of (1.1) in tenns of Wronskians of the 
Jost solutions, we also need to consider the differential equation 

-Ir"(k,x) + [-ikP(x) + Q(x)] Ir(k,x) = t2.r (k,x), xER. (3.1) 
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Notice that (3.1) is obtained from (1.1) by changing the sign of P(x). Leti/(k,x) and.r,:-(k,x) 
denote the Jost solutions of (3.1) from the left and from the right, respectively, satisfying 
the boundary conditions (2.1) and (2.2), respectively. As in (2.3) and (2.4), in terms of the 
spatial asymptotics of these Jost solutions we can define the transmission coefficient T- (k), the 
reflection coefficient from the right R-(k), and the reflection coefficient from the left L - (k). 
In terms of the Jost solutions of(1.1) and (3.1), we have 

2ik 
[t(k,x);ff(k,x)] = - T±(k) , 

rr±(k ).I'l'(-k )] = 2ikL±(k) = _ 2ikR'F(-k) 
V/ ,x >.Ir ,x r±(k) T'f( -k) , 

rr±(k ).I"'F(_k )] = _ 2ikR±(k) = 2ikL'F(-k) 
Vr ,x >.1/ ,x r±(k) T'f(-k) , 

(3.2) 

kER, (3.3) 

kER. (3.4) 

The scattering matrices S+(k) associated with (1.1) and S-(k) associated with (3.1) are 
defined as 

Let S[O] (k) denote the scattering matrix associated with (1.2): 

[0] _ [ T[O] (k) R[O] (k) ] 
S (k) - L[O](k) r[O](k) , 

where riO] (k) is the transmission coefficient, and R[O] (k) and L[O] (k) are the reflection coeffi­
cients from the right and from the left, respectively. When Q ELI (R), it is known that S[O] (k) 
exists and is continuous for k E R. From (2.7) and (3.2) we obtain 

k k 
r±( -k) = T±(k) , 

kEC+. 

Although the quantities given on the right-hand sides of (3 .2)-(3.4) exist and are continuous in 
their respective domains, the scattering coefficients r± (k), R± (k), and L ± (k) do not necessarily 
exist or are not necessarily continuous for all k E R. When they exist, we have 

Using the Jost solutions of(l.l) and (3.1), we obtain the Wronskian relations 

. . I-L±(k)L'F(-k) 
[t(k,x)J;f( -k,x)] = -2zk = -2zk r±(k) T'F( -k) , 

. .1-R±(k)R'F(-k) 
W(k,x);ff( -k,x)] = 2zk = 2zk r±(k) T'f( -k) . 



6 Aktosun et al. 

Contrary to the unitarity of Slol (k), the matrices S±(k) are in general not unitary, but instead, 
for k E R except at the singularities of S± (k) as indicated in Theorem 3.1, we have 

S±(k)S'F(k)t = I, 

where I is the 2 x 2 unit matrix and the superscript t denotes the matrix transpose. For such k 
we also have 

Theorem 3.1. Assume P, Q ELI (R). Then: 

(a) The jUnctions 1/ r±(k) are analytic in C+ and continuous in C+ \ {O}, their zeros in C+ 
are all isolated and can only accumulate on the real axis. The transmission coefficients 
r± (k) cannot have any zeros in C+ \ {O}. 

(b) The quantities L±(k)/r±(k) and R±(k)/r±(k) are continuous on R \ {OJ. 

(c) For fixed ko E R \ {OJ, the quantities l/T+(ko) and R+(ko)/r+(ko) cannot be zero 
Simultaneously; similarly, l/r+(ko) and L+(ko)/r+(ko) cannot be zero simultane­
ously. If l/r+(ko) = 0 for some ko E R \ {OJ, then the quantities R±(ko)/r±(ko), 
L±(ko)/r±(ko), R±( -ko)/r±( -ko), L±( -ko)/r±( -ko) are all nonzero. 

(d) R+(k) is continuousfor k E R \ {OJ ifand only ifljr+(k) does notvanishfor k E R \ {OJ. 
Similarly, L + (k) is continuous for k E R \ {O} if and only ifl / r+ (k) does not vanish for 
kE R\ {OJ. 

(e) For k E R \ {OJ, the quantity r+(k) is continuous if and only if R+(k) is continuous; 
equivalently, T+ (k) is continuous if and only if L + (k) is continuous. 

(/) If, in addition, Q E Ll (R), then k/[(k+ i) r±(k)] are continuous and bounded in C+, 
and kL± (k)/r± (k) and kR±(k)jr±(k) are continuous and bounded on R. 

Proposition 3.2. Assume P(x) ~ 0 and P,Q E LI (R). Then S+(k) is continuous on R \ {OJ. 
Ifwefurther assume Q E Ll (R), then S+(k) is continuous on R 

Theorem 3.3. Assume P, Q ELI (R). The scattering coefficients satisfy 

I IL±(k) 12 foo 2 1r±(k)12 = 1 + r±(k) =F _00 dxlff(k,x)1 P(x) , kE R\ {OJ, 

1 IR±(k) 12 fOO 2 
IT±(k)12 = 1 + T±(k) =F _00 dxlFr(k,x)1 P(x) , kER\{O}. 

Hence, if P(x) ~ 0, 1/ r+ (k) cannot have any zeros for k E R. and we have 

1r+(kW + IL+(k) 12 :::; 1, 1r+(kW + IR+(k) 12 ~ 1, k E R. 

If 1 j r+ (k) does not have any zeros for k E Rand P(x) ~ 0, then we have 

1r+(k)12 + IL+(k) 12 ~ 1, I r+ (k) 12 + IR+ (k) 12 ~ 1, k E R. 

Corollary 3.4. Assumep,QEL1(R) andP(x) ~ O. Then,forkE R\ {OJ, we have 1r+(k)12 ~ I, 

and hence l/r+(k) cannot vanish on R Moreover,forkE R\ {OJ, we have ~ ~ Ir-\k)l. 
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4. ASYMPTOTICS OF SCATTERING COEFFICIENTS 

The large-k asymptotics ofS±(k) are summarized in the following theorem. 

Theorem 4.1. Assume P, Q EL I (R). Then 

T±\k) exp ( ±~ i: dxP(X)) = 1 +0(1), k-+ 00 in C+ , 

k-+ ±oo. 

Corollary 4.2. Assume P, Q EL I (R). If 1 / T± (k) does not vanish for k E R, then its number 
of zeros in C+ is finite. This occurs, in particular, if P(x) S; O. 

Next, we analyze the small-k asymptotics ofS±(k) in the generic and exceptional cases 
separately. In the exceptional case, we will see that S+(O) is not determined by Q(x) alone 
and obtain S+(O) explicitly in terms of P(x) and Q(x). 

Theorem 4.3. Assume PEL 1 (R) and Q E LI (R) and suppose that we are in the generic case. 
Then R±(O) = L±(O) = -1, P(k) vanish linearly as k-+ 0 in C+, and 

I· 2ik I' 2ik I' 2ik Im--= Im--= Im--. 
k-tO T+(k) k-tO T-(k) k-tO T[O](k) 

Furthermore, det S± (0) = -1, and we have 

2ik 
r±(k) = ex) flO] +o(k), 

LoodyQ(y) I (O,y) 
k-+ 0 in C+. 

Theorem 4.4. In the exceptional case, under the assumptions P, Q E Ll (R), we have 

where 1'is the constant defined in (2.6). 

(4.1) 

Theorem 4.5. Let Q E Ll (R), and assume that P E L1 (R) in the generic case and P E Ll (R) 
in the exceptional case. Then: 
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(a) Ijany one ofl/r+(k), R,+(k)/T+(k), L+ (k)/r+ (k) is continuous at k= 0, then all three 
are continuous at k = O. Moreover, either 1/ r+ (k) and 1/1 (k) are both continuous at 
k = 0 or both discontinuous at k = O. 

(b) In the generic case the six quantities l/r±(k), R±(k)/r±(k), and L±(k)/r±(k) are all 
discontinuous at k = 0; in the exceptional case, these quantities are all continuous at 
k=O. 

(c) In the exceptional case l/r+(k) vanishes at k = 0 ifand only if f':.<¥JdxP(x)}jol(0,x)2 is 
equal to r + 1, where 1 is the constant defined in (2.6). In the generic case, k/r+(k) 
has a nonzero limit as k ~ O. 

(d) Either the three quantities r+(k), R+(k), L+(k) are all continuous on R, or they are all 
discontinuous on R 

In the special situation when Q(x) = 0, we have }j0l(O,x) = flol(O,x) = I and hence 
1= 1. This corresponds to the exceptional case. Using these values in (4.1) we see that 

I 11<¥J 
T+(O) = 1 - 2" -<¥J dxP(x). 

Hence, if J':.<¥JdxP(x) = 2, no matter how smooth P(x) is, we have ~ = 0 and ~:~~~ = 
~~~~ = 1. In this case S+(O) is clearly undefined. 

S. BOUND STATES 

Although T[Ol(k) cannot have any singularities when k E R, we cannot rule out singu­
larities of r+(k) when kE Runless P(x) ~ 0, as we have seen at the end of Section 4. Some 
other examples of such singularities will be presented in Section 8. 

Theorem 5.1. Assumep,Q E LI(R). Thezerosof1/-r+(k) on the real axis do not correspond 
to the bound statesof(1.1). Each zero ofl/r+(k) in C+ corresponds toa bound stateof(1.1). 
Conversely, if (1.1) has a bound state at some leo E C+, it is necessary that 1/ -r+ (leo) = O. 

Let us define 

Pmin = ess inf P(x) , 
xER 

Pmax = ess supP(x), 
xER 

Qmin = ess inf Q(x) , 
xER 

(3* =Pmax/2+ Jp2max/4 -Qmin. 

(5.1) 

Note that, ifP,Q E LI (R), it follows thatPmax ~ o with equality holding if and only ifP(x) ~ 0, 
that Qmin $ 0 with equality holding if and only if Q(x) ~ 0, and that Pmin ~ 0 with equality 
holding if and only if P(x) ~ O. Furthermore, (3* ~ Pmax with equality bolding if and only if 
Q(x) ~ o. 
Theorem 5.2. Assume P,Q E LI(R), P(x) ~ 0, and Pmax isfinite. Then the zeros ofl/T+(k) 
for P max/2 ~ Imk < (3* can only occur on the imaginary axis, and all such zeros are Simple. If, 
in addition, Qmin isfinite, then therearenozerosofl/r+(k) in the region {kE C+: (Imk)2-
(Rek)2 - (Imk)Pmax ~ -Qmin}. Consequently, l/T+(k) has no zeros in C+ satisfyingImk ~ 
(3*. 
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Theorem 5.3. Assume Q(x) = ° and P E LI (R). If t::oodxP(x) > 2, then (1.1) has at least 

one bound state at k = i{3for some positive (3. If t::oodxIP(x)1 ::; 2, then I/T+(k) has no zeros 
inC+. 

Theorem 5.4. Assume that PEL 1 (R) and Q E LI (R). At the k-values in C+ satisfying 
f.:'oodx likP(x) + Q(x) I ::; 21kl, there are no zeros of l/r+(k). Moreover, there are no zeros of 
I/T+(k) in C+ \ {iKI,'" ,iKN} satisfying IT{oJ(k)IIIPIII,1 < 2e-IIQlh,l, where Kj correspond 
to the bound states of(I.2). 

Next we analyze the change in N(P,Q), the number of bound states of (1.1), when we 
perturb P(x) or Q(x). In the next two theorems we write T+(k;P'Q) for the transmission 
coefficient of (1.1) to emphasize its dependence on P(x) and Q(x). By IlfliI we denote the 
norm on LI (R), i.e. IlfliI = f.:'oodxlf(x)l. 

Theorem 5.5. AssumePI,P2 ELI(R) andQI,Q2 EL1(R), andsuppose I/T+(k;P\,QJ) does 
not have any real zeros and QI (x) is a generic potential. IfIIPI -P21h + IIQI - Q21h,1 is small 
enough, then 

(a) I/T+(k;P2, Q2) does not have any real zeros. 

(b) N{P2, Q2) = N(PI, QI). 

(c) If all zeros of l/T+(k;Pt,QJ) are simple and purely imaginary, then the zeros of 
1/ T+ (k; P2, Q2) are also simple and purely imaginary. 

Theorem 5.6. Assume P\,P2,Q E Ll(R), I/T+(k;PI,Q) does not have any real zeros, and 
Q(x) is an exceptional potential. IfIlPI -P2IiI,1 is small enough, then 

(a) I/T+(k;P2, Q) does not have any real zeros. 

(b) N(P2,Q) =N(PI,Q). 

(c) If all zeros of I/T+(k;Pt,Q) are simple and purely imaginary, then the zeros of 
1/ T+ (k;P2, Q) are also simple and purely imaginary. 

WhenP(x) ::; 0, we can say more about the bound states of ( 1. I). From Theorem 5.2 we 
get the following: 

CoroUary 5.7. Assume P(x) ::; ° and P, Q ELI (R). Then, the poles of T+ (k) in C+ are all 
purely imaginary and simple. In addition, assume that Qrnin defined in (5.1) isfinite; then there 
are no zeros of 1 /T+ (k) in C+ for Imk 2: .j -Qrnin. In particular, if P(x) ::; ° and Q(x) 2: 0, 
then I/T+(k) has no zeros in C+. 

When P{x) ::; 0, under additional assumptions on P' (x), Pivovarchik has shown that [5] 
the number of bound states of the radial analog of(1.1) is independent of P(x) and that [6--8] 
the bound states can only occur when k is located on the positive imaginary axis in C+ and 
each bound state is simple. The results were actually obtained for a class of abstract operator 
polynomials with the radial analog of (1.1) as an example. It is possible to obtain Pivovarchik's 
results on the full line and without assuming the differentiability of P(x). 

Theorem 5.8. Assume P,Q E L\(R) and P(x)::; 0. If N(O,Q) = +00, then we also have 
N(P, Q) = +00. If N(O, Q) is finite, then we have N(P, Q) = N(O, Q). Thus, the number of 
bound states of (I. I) coincides with the number of bound states of(1.2). 
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Theorem 5.9. Assume N(O,Q) isfinite and nonzero, P(x) SO, and suppose P,Q E LI (R) and 
P min is finite, where P min is the constant defined in (5.1). Let k = iKj correspond to the bound 
states of (1.2) for j = 1"" ,N. Then, the zeros ofl/r+{k) in C+ occur at k = i{3j satisfying 

{3* S {3j S Kjforj= 1,,,, ,N, where {3. =Pmin/2+ Jp~in/4+,q. Inparticular, {31 2': (3. and 
f3N S K'N, with equalities holding if and only if P{x) == O. 

Theorem 5.10. Assume P,Q E LI(R), P(x) SO, and N(O,Q) = +00, and let {ej} and {eJol} 
for j 2': I denote the bound-state energies of (1.1) and (1.2), respectively, ordered such that 
ej < ej+1 and ejOl < ej~I' Then, we have ejOl S ej < Of or j 2': 1, andhence the bound-state 
energies of (1. 1) cannot occur below the lowest bound-state energy of(1.2). 

Recall that the Levinson theorem [9, 10] rela~es the number of bound states of the 
SchrOdinger equation to the change in the phase of the transmission coefficient. Next we 
present an analog of the Levinson theorem for (1.1 ). 

Theorem 5.11. Assume that P E LI (R) in the generic case and P E LI (R) in the exceptional 
case and thatQ E LI (R), and suppose 1/r+(k) does not have any real zeros. Then the number 
of bound states of (1.1) is given by 

where d = ° in the exceptional case and d = 1 in the generic case, and arg T+ (k) denotes the 
continuous branch of the argument ofT+ (k) normalized so that arg r+ (+00) = o. 

6. EIGENVALUE BRANCHES 

In this section we consider the bound states of ( 1.1) when k is on the positive imaginary 
axis in C+; in other words, we consider the negative-energy bound states of (1.1). As indicated 
in Theorem 5.1, (1.1) cannot have any bound states at zero or positive energies. When P( x) S 0, 
as seen in Theorem 5.9, the bound states of (I. I) can only occur at negative energies. However, 
unless P(x) SO, there may exist also bound states at complex energies, some examples of 
which will be given in Section 8. 

The negative-energy bound states of (1.1) can be analyzed in terms of the eigenvalue 
curves of the differential operator {jJ3 given by 

(jJ3 = _d2 /~ + Q(x) - (3P(x). (6.1) 

Let us write (1.1) when k = i{3 as a system of two simultaneous equations: 

-tf/' + V{{3,x) 1/1 = E{(3) 1/1, (6.2) 

(6.3) 

where (3 is considered to be a parameter in the potential V{{3,x) = Q(x) - (3P(x) of the 
Schrodinger equation (6.2), and E{(3) denotes the corresponding energy for each (l Each 
bound-state energy of (1.2) gives rise to an eigenvalue branch E{(3) of C>J3. Note that for each 
(3 > 0, a nontrivial solution of (1.1) belonging to L2(R) corresponds to an eigenvector of C>J3 
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with the eigenvalue E, which we write E(f3) to emphasize its dependence upon 13. Thus, we see 
that the negative-energy bound states of (1.1) correspond to the eigenvalues E(f3) that intersect 
the parabola E = -132 in the (13, E)-plane. Assume that the eigenvalue branch E(f3) and the 
parabola E = -132 intersect at ({30, -f3~). Then, (30 corresponds to a bound state of (1.1) 
with negative energy. Conversely, any negative bound-state energy of (1.1) can be identified 
with a simultaneous solution of (6.2) and (6.3). Hence, we can analyze the negative-energy 
bound states of (1.1) by analyzing the eigenvalue curves of <9 (3 and their intersections with the 
parabola E = - 132 • 

Associated with the eigenvalue Eo (13) there exists [11] a real-valued, analytic eigenvector 
!/I(f3,x). Near 13 = /30 we have the convergent expansions 

00 00 

Eo(f3) = Lan (13 - /3ot, I/I(f3,x) = L !/In(x)(f3- (30)n, (6.4) 
n=O n=O 

with !/In E L2(R) for n 2: O. One may choose lfJo(x) = Jt(i/30,x). We can recursively determine 
an and !/In(x). In fact, we have 

ao = Eo(f30), (6.5) 

For the lowest eigenvalue, one obtains 

Theorem 6.1. Suppose P, Q ELI (R). Then. the lowest eigenvalue branch satisfies E" (13) ::; 0 
for 13 > 0 with equality holding if and only if P(x) == O. 

An eigenvalue curve E({3) may cut the parabola E = _(32 at two or more points, and if 
this happens each intersection gives rise to a negative-energy bound state of (1.1). Moreover, 
E(f3) + 132 may have double or higher-order zeros; then, the order of the zero of E(f3) + 132 is 
the same as the mUltiplicity of the corresponding bound state. 

Theorem 6.2. Suppose P, Q ELI (R). Then. 1/ T+ (if3) has a zero of order m at some positive 
/30 if and only if the function Eo(f3) + 132 has a zero of order mat /30. where Eo (13) denotes the 
unique eigenvalue branch of the operator <9(3 satisfying Eo (13) -t -f3~ as 13 -t /30. Moreover, 
if (1.2) has NCO, Q) bound states. then (1.1) has at least N(O, Q) bound states with negative 
energies. 

If 130 corresponds to a zero of Eo (13) + 132 of order m for some m 2: I, then the coefficients 
an in (6.4) are determined for n = 0, I,'" ,m - I by expanding Eo(f3) + 132 about (30. Thus, 
for m = I we get ao = -f3~; for m = 2 we have ao = -f3~, al = -2/30; for m = 3 we get 
ao = -f3~, al = -2/30, a2 = -1; for m 2: 4 we get ao = -f3~, al = -2/30, a2 = -1, and 
a3 = ... = am-l = O. 

If P(x) ::; 0, from (6.5) we see that al 2: 0 for any positive /30 with equality holding 
if and only if P(x) == O. Thus, when P(x) ::; 0 we have E'(f3) 2: 0, and as a result each 
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eigenvalue branch Ej{(3) is a nondecreasing function of 11 Therefore, for (3 > 0, the graph 
of each eigenvalue branch Ej«(3) intersects the parabola E = -Ji at exactly one point, say 
«(3b-(3j), and each Ej{(3) gives rise to exactly one solution of (6.3). Hence, there is a one­
to-one correspondence between the bound states of (1.1) and the bound states of (1.2), and 
Ej{(3) satisfies Ej(O) = - Kj. The number N(P, Q) is equal to the number of intersections of 
the parabola in (6.3) with the eigenvalue branches Ej{(3) forj;::: 1. Since each of the N(O,Q) 
branches is responsible for exactly one intersection, we conclude that N(P'Q) = N(O,Q). 
Note that if Q ELI (R) but Q ¢ Ll (R), it is possible that N(O, Q) = +00, but then we also have 
N(P'Q) = +00. 

7. ZEROS OF JOST SOLUTIONS 

In this section we study the zeros of the Jost solutions of (1.1) for fixed k and analyze 
the number of such zeros in relation to the bound states of (1.1) and (1.2). 

Concerning the zeros of the Jost solutions of(I.2) when k is on the positive imaginary 
axis in C+, the following is already known [12,13]: 

Proposition 7.1. Suppose Q E LI(R) and (3 > 0. Then the number of zeros of.t!°l(i(3,x) is 
equal to the number of bound states of (1.2) with energies contained in the interval ( -00, - p2). 
Supposefurther that Q E Lj(R). Then, the number of zeros of.t!°) (O,x) is equal to N(O,Q). 

The next proposition concerns the zeros of the Jost solutions when k lies off the positive 
imaginary axis in C+. 

Proposition 7.2. Assumep,QELI (R) andkE C+. ifP(x) ~ 2 Imk, thenJ(k,x) andJj(k,x) 
cannot vanish for any x E R 

When k is confined to the positive imaginary axis, one can analyze the zeros of the Jost 
solutions of (1.1) by using the methods [13,14] developed for (1.2). At a fixed nonnegative 
{3, one can show thatJ(i{3,x) andJj(i{3,x) have the same number of zeros. These zeros are 
simple, and they are interlaced whenJ((i{3,x) andJj(i{3,x) are linearly independent. 

Theorem 7.3. Suppose P E LI (R) and Q E Ll (R), and assume that (1.1) has a bound state of 
multiplicity m at k = i{30 for some positive (30. Then, the number of zeros of J( (i(3,x) behaves 
in the following manner as (3 is increased from (30 - E to {30 + E for sufficiently small and 
positive E : if m is even, then the number of zeros is either constant throughout the interval 
«(30 - E, (30 + E) or it is constant in «(30 - E, (30) U ({30, (30 + E) but one less at {30. if m is odd, 
then the number of zeros either increases or decreases by one as {3 crosses (30. The number of 
zeros ofJ( (i(3,x) can only change at f3-values corresponding to the bound states of (1.1). 

When P(x) ~ 0, the number of zeros of the Jost solutions of (1.1) when k is on the 
positive imaginary axis in C+ is related to the bound states in a simple manner. 

Theorem 7.4. Assume that PEL 1 (R), Q E Lj(R), and P(x) ~ 0. Then,for each {3 ;::: 0, the 
junctionsJ((i(3,x) andJj(i(3,x) have the same number of zeros, and this number is equal to 
the number of bound states of (1.1) with energies contained in the interval (-00, _(32). 

For further results on the zeros of the Jost solutions of (1. 1), we refer the reader to [1]. 
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8. EXAMPLES 

In this section we present explicitly solved examples illustrating the theory presented 
in the earlier sections. The numerical values in these examples were obtained by using the 
mathematical software Maple. 

Our first example shows that if we relax the condition P E LI (R), the scattering matrix 
S+(k) may not exist at all. 

Example 8.1. Let P(x) and Q(x) have support in (0,+00) and be given by 

2 2 
Q(x) = 6{x) (I +x)2' P{x) = 6{x) 1 +x' (8.1) 

where 6(x) is the Heavisidefunction; thus P rt. LI (R). Two linearly independent solutions of 
(1.1) are given by 

+ e _~ ~n -ikx [ ",. kx] 
"'I (k,x) = 6{x) I +x + 6{ -x) e - -k- , 

tfJt{k,x) = 6{x) [x+ I + ~ - 2k2{: +xJ ~kx + 6{ -x) F{k,x) , 

where we have defined 

F{k,x) = (1 + 2~3 ) sinkx+ (I + ~ - 2~2 ) eikx• 

Note that tfJt{k,x) --t ° and tfJt{k,x) = O{x) as x -t +00; hence. we cannotform a solution of 
(1.1) asymptotic to eikx as x -t +00. Although we canform a linear combination oftfJt{k,x) 
and tfJt{k,x) that is asymptotic to e-ikx as x -t -~ the resulting function is not bounded as 

x -t +00. Thus. there are no scattering solutions and no scattering matrices corresponding 
to the potentials given in (8.1). Note that the scattering matrix S[O] (k) co"esponding to (1.2) 
with Q(x) given in (8.1) is well defined. and we have 

T[O](k) = 2k2:~k-I' L[O]{k) = -R[OI(k) = 1 . 2k2+2ik-1 

Contrary to the case P{x) = 0, the scattering matrix S+(k) is in general not determined 
if one of the reflection coefficients and the bound state energies are known, as illustrated by 
the following example. 

Example 8.2. Assume Q E LI (R) is an exceptional potential without bound states. Let 

A,°]'{O ) P{ ) _ I ,x 
x - AO] , 

Ii (O,x) 
(8.2) 

where.t}°l{O,x) is the zero-energy Jost solution of(1.2); note that.t}°l{O,x) is uniquely deter­
mined by Q(x) alone and P{x) given in (8.2) necessarily belongs to L 1 (R). The corresponding 
scattering matrices S± (k) can be evaluated explicitly, and we have 

r(k) =.!., L+(k) = 0, R+(k) = 21' dy:'(O,Y) e-"", (8.3) 
'Y -00 I (0,y)3 
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where yis the constant defined in (2.6). As seenfrom (8.3), T+(k) andL+(k) cannot determine 
R+ (k), and there are infinitely many R+ (k) corresponding to these two scattering coefficients. 
Therefore, the coefficients P(x) and Q(x) cannot in general be determinedfrom the scattering 
data consisting of the transmission coefficient and of only one of the reflection coefficients. 
Note also that S+ (k) is in general not determined by only one or two of its entries. 

In the next example we show that l/T+(k) may have zeros on R or off the positive 
imaginary axis in C+. We also consider the zeros of 1/ r+ (k) on the positive imaginary axis 
arid illustrate the fact that unless P(x) ~ 0, the number of negative-energy bound states of (1.1) 
may be more than the number of bound states of(1.2). 

Example 8.3. For real parameters a and b, let 

P(x) = { ~: xE(O,I), 
elsewhere, Q(x) = { ~: XE(O,I), 

elsewhere. 

The resulting transmission coefficient can be obtained explicitly and we have 

I ik [ ~ +s2 . ] 
T+(k) = e coss+ 2iks sms , 

(8.4) 

where we have defined s = J k2 - ibk - a. Let us use an overline on the last digit to indicate 
a roundoff. When a = -9.2738 and b = 3.9708, wefind simple zeros ofl/r+(k) at k = ±l. 
When a = 0 we have 

L+(O) R+(O) b 
T+(O) = T+(O) = 2' 

and hence 1/ T+ (0) = 0 if b = 2. When b = 0 and a < 0, we have a square-well potential, and 
in this case (1.1) has:N bound states such that 

(8.5) 

When a = -100 and b = 0, from (8.5) we see that we get four bound states of (1.1) at 
k= iKj with 

K\ = 1.93, K2 = 6.4T, K3 = 8.55, K.t = 9.65. 

When a = -100 and b = -10, there are four bound states at k = if3j, where 

f3\ = 0.76, f32 = 3.55, f33 = 5.IT, f34 = 5.92. 

When a = -100 and b = -100, there are still four bound states with 

(8.6) 

(8.7) 

(8.8) 

From (8.6)-(8.8), we see that as b becomes more negative the bound-state energies are pushed 
toward zero. Now let us see what happens when b > O. By Theorem 5.3, if a = 0 and b > 2, 
we must have a bound state at k = i f3 for some positive f3. Letting a = 0 and b = 21/ 10, we 
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obtain a bound state at k = 0.15i; from the plot ofr+(k) for k E (0, +00), we see that this is the 
only bound state. Note that when b > 0 we cannot exclude the possibility of bound states with 
k off the imaginary axis in C+. For example, when a = -93/10 and b = 4, we find bound 
states at k = ±0.9764 + 0.0233i; in this case there are no other bound states. Choosing a = 0 
and b = 10, we obtain over 200 bound states, only three of which correspond to the k-values 
on the positive imaginary axis with k = i{3j, where 

~I = 2.14, /32 = 5.96, ~3 = 9.27. (8.9) 

Choosing a = 0 and b = 100, when k is on the positive imaginary axis we obtain thirty-one 
bound states with 

~I =0.10, 
~5 = 2.64, 
/39 = 9.19, 
~\3 = 22.61, 
~17 = 69.69, 
~2) = 86.83, 
/325 = 95.12, 
/329 = 99.14, 

~2 = 0.41, 
~6 = 3.85, 
~)o = 11.69, 
~)4 = 28.43, 
~)8 = 75.60, 
~22 = 89.42, 
/326 = 96.46, 
~30 = 99.62, 

~3 =0.93, 
~7 = 5.33, 
~)) = 14.63, 
~)5 = 37.63, 
~)9 = 80.11, 
/323 = 91.63, 
/327 = 97.57, 
~3) = 99.91, 

~4 = 1.67, 
~8 = 7.09, 
~)2 = 18.20, 
~)6 = 60.41, 
~20 = 83.77, 
/324 = 93.52, 
/328 = 98.46, 

and there are also many more bound states corresponding the k-values off the imaginary axis 
in C+. Note that the bound states may occur even when a > 0 and b > O. For example, when 
a = 1 and b = 10, we obtain many bound states, four of which correspond to the k-values on 
the positive imaginary axis with k = i~j, where 

(3) = 0.13, ~2 = 2.50, ~3 = 5.63, (34 = 9.16. 

Next we present an example where T+(k) has a double pole on the positive imaginary 
axis in C+. 

Example 8.4. Let 

4b€ce-2Elxl 
P(x) - ----=--;-;­

- 1 + ce-2Elxl ' 

with € > 0, c E (-1, -5 + J2Q), and b E R. The transmission coefficient can be evaluated 
explicitly, and we have 

where we have defined 
€ 

ko = i-I -[-1 +c+2bcj, 
+c 

k~ = 2(/: c) [(-I +c+4bc) ± VI +c2 + 14c+ 16bc] . 

(8.10) 

When b = _(c2 + 14c+ 1)/(16c), we get k± = -iE(cZ + lOc+5)/[8(1 +c)j, and hence T+(k) 
given in (8.10) has a double pole on the positive imaginary axis. When b = (1 - c) / (4c), note 
that ko is located on the negative imaginary axis and that k+ and k_ are symmetrically located 
on the real axis; thus, in this case T+(k) has poles on the real axis. When b = -(5 + VS)/10 
and c = - 5 + J2Q, we get k+ = k_ = 0, and hence T+ (k) has a simple pole at k = O. 



16 AktoSUD et al. 

The next example concerns the zeros ofJt(i/3,x) when /3 > 0. 

Example 8.S. Consider the same P(x) and Q(x) as studied in Example 8.3. For the various 
specific values oj a and b listed in that example, the zeros oj 1 / r+ (i/3) are all simple. Hence, 
as Theorem 7.3 states, we expect the number oJzeros oJJt(i/3,x) andf/(i/3,x) to change by 
one at the zeros oj I/T+(i/3) as /3 varies in (0, +(0). For example, when a = ° and b = 10, 
using /31,132, and 133 given in (8.9), onefinds thatJt(i/3,x) has one zeroJor /3 E [0,(31), 
two zeros Jor /3 E (/31,132), one zero Jor /3 E (132,133), and no zeros Jor /3 E (/33, +(0). When 
a = ° and b = 21/10, onefinds thatJt(i/3,x) has one zeroJor /3 E [0,/31) and no zerosJor 
/3 E (/31,+00), where /31 = 0.15. When a = 0 and b = 100, one finds thatJt(i/3,x) has no 
zerosJor /3 E (1331,+00), one zeroJor /3 E [0,/31) and one zeroJor /3 E (f33o,f33t),j zerosJor 
/3 E (/3j-I.{3j) and j zeros Jor /3 E (/33l-j,/332-j) with j = 2,3,··· , IS, and sixteen zeros Jor 
/3 E (/316,/317). On the other hand,for a = 19.852 and b = 10, there is one negative-energy 
bound state oj (1.1) oj mUltiplicity two occurring at k = i/31 with /31 = 4.724; in this case 
Jt(i/3,x) has no zerosJor any /3;::: O. 

9. INVERSE PROBLEMS 

Inverse problems related to (1.1) consist of the recovery of P(x) or Q(x) from an 
appropriate set of scattering data. One such inverse problem is to recover both P(x) and Q(x). 
In the radial case, when there are no bound states, Jaulent and Jean presented [15] an inversion 
method when Q(x) is real and P(x) is imaginary. They also extended their method to solve 
the inverse problem on the full line for real Q(x) and imaginary P(x) [16, 17]. By this method, 
using the scattering data {R+ (k), R-(k)}, one solves a pair of two coupled Marchenko integral 
equations, and these solutions are used in a first-order ordinary differential equation whose 
solution leads to P(x). Jaulent [18] also extended this method to the case when P(x) is real 
although complete details and proofs were not given. When P(x) is purely imaginary and 
t~<XJdzP(z) = 0, Sattinger and Szmigielski [19] showed that one can simplify the method of 
Jaulent and Jean and recover P(x) by solving an algebraic equation rather than a differential 
equation. 

When P(x) is purely imaginary, the methods available for self-adjoint differential op­
erators can be employed to analyze the inverse scattering problem for (1.1); in this case the 
scattering matrices S±(k) are unitary and the reflection coefficients cannot , exceed one in ab­
solute value. However, when P(x) is real, the differential operator pertaining to (1.1) is no 
longer self-adjoint and the scattering matrices S± (k) are no longer unitary. Consequently, the 
analysis of the direct and inverse scattering problems with real P(x) is more difficult than with 
imaginary P(x). As we have seen, for example, the non-self-adjointness of the differential op­
erator in (1.1) may lead to singularities of the transmission coefficient on R, and the reflection 
coefficients may not be bounded by one in absolute value and hence the Marchenko integral 
operators are in general not contractive. When P(x) $ 0, some of the usual properties of the 
one-dimensional SchrOdinger equation given in (1.2), such as the simplicity of the poles of 
the transmission coefficient, the confinement of these poles to the positive imaginary axis in 
C+, and the absence of singularities of the transmission coefficient at real-k values are still 
valid for (1.1). However, in the available inversion methods to recover P(x) and Q(x) one 
needs the scattering data associated with both (1.1) and (3.1). Hence, even when we study the 
inversion problem for absorptive media where one requires P(x) $ 0, one may have to deal 
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with bound-state scattering data for (3.1) which may involve complex-energy or degenerate 
bound states, unless the absorption is sufficiently weak. 

Finally, let us mention the study by Kaup [20] on the direct and inverse scattering problem 
for 

ql' + [~+ 4~2 ] </> = [ikP{x) + Q{x)]</>, (9.1) 

where (3 is a nonzero constant and P, Q E LI (R). Under additional restrictions on P{x), 
Tsutsumi [21] analyzed the scattering problem for (9.1) with (3 = ! by using a 2 x 2 matrix 
analog of (1.1) with k replaced by Vk2 + 1. Sattinger and Szmigielski [22] studied the direct 

and inverse scattering problem for (9.1) when f3 = !, t':oodxP{x) = 0, and P{x) and Q(x) are 
in the Schwartz space. The inverse scattering problem for (9.1) is used to solve an initial-value 
problem for a coupled system of two nonlinear evolution equations, and that inverse problem 
is analyzed by studying an associated Riemann-Hilbert problem [22]. We should emphasize 
that both the direct and inverse scattering problems for (1.1) are somewhat different from 
those for (9.1). The direct problem for (9.1) is analyzed in the complex-z plane using Kaup's 
transformations k = H2z - I/{2f32z)] and E = v'k2 + 1 = H2z+ I/(2f32z)J. 
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