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Wave scattering is analyzed in a one-dimensional nonconservative medium gov-
ermned by the generalized Sédinger equation d?y/dx?+k?y=[ikP(x)
+Q(x)]¢, whereP(x) and Q(x) are real, integrable potentials with finite first
moments. Various properties of the scattering solutions are obtained. The corre-
sponding scattering matrix is analyzed, and its srkalhd largek asymptotics are
established. The bound states, which correspond to the poles of the transmission
coefficient in the upper-half complex plane, are studied in detail. When the medium
is not purely absorptive, i.e., unleB{x)<0, it is shown that there may be bound
states at complex energies, degenerate bound states, and singularities of the trans-
mission coefficient imbedded in the continuous spectrum. Some explicit examples
are provided illustrating the theory. @998 American Institute of Physics.
[S0022-24888)01503-3

[. INTRODUCTION

Wave propagation in a one-dimensional nonconservative medium is described, in the fre-
guency domain, by the generalized Salinger equation

Y kX)) K2yt (kX)) =[IkP(X)+Q(x)J¢ " (k,x), XeR, (1.9

whereR is the real line, the prime denotes the derivative with respect to the spatial coorxlinate
k is the wave numbefalso known as the momentyk? is the energy,P(x) describes the
combined effect of energy absorption and energy generatiomrQérgdenotes the restoring force
density. In the time domainl.1) corresponds to a wave equation of the form

Ju  ¢u

P Ju
X2 o2 (x)

p =Q(x)u, t,xeR,
where the wave speed is equal to 1. WHefx) <0, there is net absorption; however, unless
otherwise stated we will not put any restriction on the sig? ff). In the sequel a significant role
will be played by the associated equation

b (kX)) + K2 (K, x)=[—ikP(X)+Q(x)]¢ (k,x), XeR, (1.2

where the sign oP(x) in (1.1) has been changed.

Let L§(1) denote the measurable functiofi) such that/dx (1+|x])%f(x)|P<+o, and
let LP(1)=L§(1). Throughout the paper we will usg|; and|f|,, to denote theL*(R) and
L}(R) norms,f”_.dx |f(x)| andf”_.dx [1+|x|]|f(x)|, respectively. All the results given in this
paper are valid if we assume thatandQ are real valued and belong td(R). The existence of
the first moment is needed for certain results that involve the kmi0. Some results, however,
will be proved under the weaker conditioRsQ e L1(R).
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The scattering solutions dfi.1) and(1.2) are those behaving like'** or e ** asx— + 0,
and such solutions occur whéi>0. Among the scattering solutions are the Jost solution from

the left f,"(k,x) and the Jost solution from the right (k,x) satisfying the boundary conditions

ek +0(1), x—+oo,

frkx=¢ 1 L7k (1.3
=K e+ =K e "*+0(1), x——oo,
! e kx4 R e**+0(1), x—+o,

2 (kx)=1 T (k) T=(k) (1.4)
e 4 0(1), x——o0,

where T (k) are the transmission coefficients, aRd (k) andL*(k) are the reflection coeffi-
cients from the right and from the left, respectively. The scattering mat8t@s) associated with
(1.2) andS™ (k) with (1.2 are given by

S (k)=

(k) R7(k)
L=(k) Tk )

WhenP(x)<0, it will be seen thaS" (k) exists for allke R; however, wherP(x)=0 or when
P(x) has mixed sign, we will see th& (k) may not exist ak=0 or at some other real values of
k.

In this paper we analyze the direct scattering problem in preparation of a more detailed study
of various inverse scattering problems fdr.1). One of these inverse problems consists of the
recovery ofP(x) and Q(x) from an appropriate set of scattering data. In the radial case, when
there are no bound states, Jaulent and Upessented an inversion method with r€xx) and
imaginaryP(x). They*®also extended their method to solve the full-line one-dimensional inverse
problem for real Q(x) and imaginary P(x). In this method, using the scattering data
{R*(k),R™(K)}, a pair of two coupled Marchenko integral equations is solved and these solutions
are used in a first-order ordinary differential equation whose solution lea@gdo Jaulert also
extended this method to the case wiix) is real although complete details and proofs were not
given. WhenP(x) is purely imaginary and”..dz P(z)=0, Sattinger and Szmigielskshowed
that one can simplify the method of Jaulent and Jean and re¢grby solving an algebraic
equation rather than a differential equation.

We should also mention the study by K&um the direct and inverse scattering problem for

1
k?+ 4—Bz}¢=[ikP(X)+Q(X)]¢, (1.9
where g is a nonzero constant al®lQ e L}(R). Under certain additional assumptions B(x),
Tsutsumi studied the scattering problem f¢i.5) with 8= 3 using a 2< 2 matrix analog of1.1)
with k replaced byyk?+1. WhenP andQ are in the Schwartz spacé’..dz P(z)=0, and3
=1, Sattinger and Szmigielgkalso studied the inverse scattering problem(fo5). In Refs. 6 and
8 the inverse scattering problem is analyzed by studying a Riemann—Hilbert problem on a par-
ticular Riemann surface.

When P(x) is purely imaginary, the methods available for self-adjoint differential operators
can be employed to analyze the inverse scattering problefd for furthermore, in this cagghe
scattering matrice$™ (k) are unitary, and hence the reflection coefficients cannot exceed 1 in
absolute value. However, whdé¥(x) is real valued, the differential operator pertaining1al) is
no longer self-adjoint and the scattering matri&$k) are no longer unitary. Consequently, the
analysis of the direct and inverse scattering problems withRés) is different and more difficult
than with imaginaryP(x). The standard prodf® of the absence of singularities of the transmis-
sion coefficient fokk e R, which relies heavily on the self-adjointness of the differential operator,
breaks down. Since the reflection coefficients may be larger than one in absolute value, the
standard proof of the unique solvability of the Marchenko integral equations is no longer valid.
Fortunately, wherP(x)<0, some of the usual properties of the one-dimensional ‘Sahger

¢H +
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equation given in(2.6), such as the simplicity of the poles of the transmission coefficient, the
confinement of these poles to the imaginary axis in the upper-half complex @lanand the
absence of singularities of the transmission coefficient wheR are still valid for(1.1), and the
proofs of such properties are obtained by a variation of the arguments usgtigjor

This paper is organized as follows. In Secs. Il and lll, relying on techniques established in a
variety of papers®*?we study the analyticity properties of the Jost solutioné&laf) and analyze
their smallk and largek asymptotics. In Secs. IV-VI we analyze various properties of the scat-
tering matricesS™ (k). In Sec. VIl we study the change in the scattering coefficients W)
andQ(x) are perturbed. In Sec. VIII we analyze the relation between the pol&s @) in C*
and the bound states; we also study multiple pole3 ofk) in terms of Jordan chains of the
differential operator given if8.3). Recall that the bound state solutiongdfl) and(1.2) are those
nontrivial solutions belonging tb?(R). In the radial case wheR(x)=<0, under certain additional
conditions onP’(x), using the theory of abstract operator polynomials, Pivovarchik has shown
that® the number of bound states is independerof) and that*~°the bound states are simple
and can only occur wheh is located on the positive imaginary axis. In Sec. IX we study the
bound states fof1.1) further and show that the poles ©f (k) in C* can only occur in a certain
region inC™ determined byP(x) andQ(x). WhenP(x) =<0, we derive Pivovarchik’s results in an
elementary way without using the theory of abstract operator polynomials and without assuming
the differentiability ofP(x); we also show that the bound states can only occur at certain negative
energies and obtain some lower and upper bounds for these energies. In Sec. IX we also obtain a
Levinson theorem relating the number of bound states to the change in the arguriiérikpf
and we show that the number of bound states is unchanged under certain small perturb@ions of
andQ. In Sec. X we analyze the zeros of the Jost solutions and obtain various results concerning
the number and location of these zeros and their relationship to the bound states; we also show that
the number of bound states ¢.1) with real energies is greater than or equal to the number of
bound states witl?(x) =0. In Sec. XI, we show by examples that there may be bound states with
complex energies and that the multiplicity of a bound staiethe sense of the order to which
1/T* (k) vanisheg may be larger than one. Finally, in the Appendix we obtain various sknall-
estimates that are needed in the proof of Theorem 5.2.

II. ANALYTICITY AND SMALL- kK ASYMPTOTICS OF JOST SOLUTIONS

Let us define the Faddeev functions from the left,(k,x), and from the rightm,(k,x), by
m” (k,x)=e " (k,x),  m;(k,x)=e**f " (k,x).

Thenm;"(k,x) satisfies

1 (= .
m (k,x) =1+ 5 L dy [e V™) —1][=ikP(y)+Q(y)Im (k,y), 2.1

mf’(k,x)=—fdy T £ikP(y) +Q(y) I (k,y). (2.2

By C* we denoteC* UR. In the following theorem and throughout the paper we will Gséo
denote a generic constafihdependent ok and k) that does not necessarily assume the same
value at each appearance.

Theorem 2.1: (i) AssumeP,QeL}(R). Then, for eachxeR, tfgfunctionsmf(k,x),
m, (k,x), m;"’(k,x), andm; ' (k,x) are analytic inC* and continuous i€ "\{0}. Consequently,
for eachxeR the Jost solutions;” (k,x), ;" (k,x) and their derivatived;"' (k,x),f;""(k,x) are
analytic inC™* and continuous irf€C*\{0}. Moreover, for eactke C*\{0} we have
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Im(k,x)|<Ce®M,  |m7(k,x)|<Ce“M, 2.3
my (k,x)=1+0(1), m ' (k,x)=0(1), X—+o,
m; (k,x)=1+0(1), m ' (k,x)=0(1), X——o0.

(i) AssumeP e Ll(_R) andQ e L1(R). Then the continuity of the functions iii) extends toCt.
Moreover, forke C* we have

Im;"(k,x)|<C[1+maxX0,—x}], |m/ (k,x)|<C[1+max0,x}], (2.9
m (K, x)=0(1/x), x—+%; m ' (k,x)=0(1/), X——os,

Proof: The proof is obtained front2.1), (2.2), and similar equations fan," (k,x) in a manner
analogou¥ to the case wittP(x)=0. In the proof of(ii), one also uses the estimates

[1-e*kX[<2, [1-e*H]<2[k|(y—x),

for ke C™ andy=x. ]
WhenPeL!(R) andQe L}(R), using(2.1), (2.2), and Theorem 2.1ii), we obtain

m(k, X\)=m(0,x)+0(1), m'(k,x)=m"'(0,x)+0(1), k—0 in C*, (2.5

uniformly on compacik-intervals. Let us consider the Schinger equation obtained froifi.1)
and(1.2) by settingP(x) =0, namely

SO (k,x) + K2yt (k,x) = Q(x) %k, x), xeR. (2.6)

Let fl%(k, x) and fl°!(k, x) denote the Jost solutions ¢2.6) from the left and from the right,
respectively. Frongl.1) and the corresponding boundary conditions we seeffh@, x),f,"(0,x),
and their derivatives are determined @¢x) alone and

m=(0,x)=f;"(0,x)=f[°0,x), m"'(0,x)=f;""(0,x)=£{"(0,x), 2.7
As seen from(2.6) and(2.7) we have

fi"(0,x) £197(0,x)
f7(0,x)  f90,x)

Q(x)=

Let §°I(k) denote the scattering matrix associated W&6):

SRSE

TO(k)  RO(k)
LOk) Tk |’

whereTl% (k) is the transmission coefficient aiRi®!(k) andL[%(k) are the reflection coefficients

from the right and from the left, respectively. Generically(0,x) and f,;(0,x) are linearly
independent, but in the so-called exceptional case these two functions are linearly dependent. We
have'1°

(2.9

—2ik
[170,%): £1%0(0, x)]= f dy Qy)fi*(0y)= f dy QTH0Y) = lim Tz

where[ f;g]=fg’ —f’g denotes the Wronskian. Th$%(0)=0 generically andr'®'(0)+0 in
the exceptional case. In the exceptional case, let us define

£191(0,x)

o (2.9

fy:
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Theny is a nonzero real constant determined@®fx) alone, and we have= f|[°1(0,— ©).

lll. LARGE-k ASYMPTOTICS OF JOST SOLUTIONS

In this section we analyze the largeasymptotics of the Jost solutions. We assume that
PeL(R) andQe Li(R). The results given here will be used in Sec. VI to obtain the l&rge-
asymptotics of the scattering mat$< (k).

Let us define

o (K, x)=e=fmy"(k, x) =e =45 (K, x),

(3.2
7y (k, x)=e"P¥im> (k, x) =e**=P¢f 5 (K, x),
where
(={(X)=% fdz P(z), p= > dz P(z), 3.2
so thatf* .dz P(z)/2=p—¢. Thus
* — alkx¥{ *
f| (k! X) € 7 (k,X), (33)
£ (k, x) =€ (ik= P12) " (k, )+ 77" (K, )],
+ — a—ikxFpx{ *
fr(k,x)=e 7, (K, X), (3.4

7 (k,x)=e TP (—ikEP/2) 5, (k, X)+ 7, (K, X)].

Theorem 3.1: AssumeP,QeL(R). Then, for eachxeR, the functions 7, (k, x) and
7, (k,x) are analytic inC*, continuous inC*\{0}, and we have

|77 (k, x)|<Ce®¥, |9 (k, x)|<Ce“M, keCH\{0}. (3.5

If PeL*(R) and QeL}(R), then, for eachxeR, the functionsz;"(k,x) and 5, (k,x) are
continuous inC™, and we have

|9 (k, x)|<C[1+maxX0,-x}], |7°(k x)|<C[1+maxX0,x}], keC*. (3.6
Moreover, ifP,Qe LY(R), then

7 (k,x)=1+0(1), 77 (k,x)=1+0(1), k— in C, (3.7)

o (k,x)=0(k), 77'(k,x)=0(k), k—» in C*, (3.9

Proof: The analyticity inC*, the continuity inF\{O}, and(3.5) and(3.6) follow from (3.1)

and Theorem 2.1i). To prove(3.7) we use(3.1) in (2.1). Letting z(k, x)= 7, (k,x)—1, after
some simplifications, we obtain

2k ) =20k, %)+ 5 [ Ay [€K979-116f -0 ikP(y) + Q) Tatky), (39
with

(3.10
Using (2.4 in (3.10 we get
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2k, )1, [ “ay [P+ IQIIKL keTT(0),

where C, is a suitable constant. For easle R, let s,(k)=sup=,|zy(k, t)|. Solving (3.9 by
iteration we obtain

|2(k, X )| <5 (k)eCa/xdY LIPMI+IQUIK], (3.1
Applying the Riemann—Lebesgue lemma(®10), we get
sy(k)=0(1), k— oo, (3.12

Using (3.11) and(3.12 we see that(k, x) is uniformly bounded irC* for |k|=a>0 for each
xe R anda>0. Hence, in view 0f3.12 and a Phragnre-Lindeld theorent’ we conclude that
z(k,x)—0 ask—» in C*. The proof of(3.7) for 5, (k,x) and 5, (k, x) is similar. To prove
(3.8) for 7"’ (k, x) we introduce the functions

+ 1 + +
& (ko x)= 5o PO 7 (K x) + 2777 (K, x) ],

(3.13
£ ()= 51 [7 P00 77 (00 + 27 (k)]
Since £ (k, x) = (L/ik) m*' (k, x)e*<, it follows from (3.1) and (3.13 that
£ (k)= - [ “ay [Py —iQIKIE s e Wy (ky). (314

Thus, using(3.5, we see that the integrand on the right-hand sid¢3daf4) is bounded by the
integrable functionC.[|P(y)|+|Q(y)|/a], uniformly in x andke C* for |k|=a>0 and each
a>0, where the constai@, only depends oma but not onx andk. By a variant of the Riemann—
Lebesgue lemma, we conclude that the right-hand sid&.6#) is o(1) ask— =, so that by a
Phragme-Lindeld theorem)” we see that the left-hand side (.14 is o(1) ask— in C™.
Consequently £, (k,x)=0(1) ask—o in C*, and so0(3.9 for 7,"'(k,x) follows by using
(3.13. The proof of(3.8) for % '(k,x) and »,”’ (k, x) is similar. |

Let us also mention that it is possible to study the ldegeehavior of the solutions dfL.1) by
converting it into a system of two coupled, first-order differential equations. We will not give the
details here but refer the interested reader to Ref. 18.

IV. SCATTERING COEFFICIENTS

In this section we summarize some basic facts about the scattering coefficients. In particular,
we are concerned with symmetries, Wronskian relations, analyticity, and continuity properties.
Applications and refinements of these results will be given in the subsequent sections. Note that,
since P(x) is assumed to be rea§™ (k) is not unitary. However, there are certain relations
(Proposition 4.3involving the scattering coefficients which reduce to the usual unitarity relations
when P(x)=0.

We begin with the observation that whke R, the quantities, (—k, x) andf, (—k, x) are
also solutions of(1.1) and hence can be expressed as linear combinations” (¢, x) and
f (k,x), unless the latter functions are linearly dependent. U§Ing and (1.4) we obtain the
two vector equations

fir(—k,x)

f7(—k, x) , keR. 4.7

[T —RE(K)
Tt TR

f(k, x)
£=(k, X)

In general,f;"(—k,x) and f,"(—k,x) cannot be continued t€* as functions ofk because
f;"(k,x) andf;"(k, x) usually cannot be extended to the lower-half complex plane
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Using (1.3 and(1.4), the scattering coefficients can be expre$sederms of Wronskians:

2ik —

[fﬁ(k,x);fri(k,x)]=—_|_t—(k), keC™, 4.2

2ikL*(k)  2ikR*(—k)

. s a 2ikRi(k)_2ikLI(—k)
[fr (k,X),f| (_k,X)]—_ Tt(k) - T$(_k) ’ (44)
. _ ) o 1-LH(k)L7(—k)
[k, x);f"(—=k, x)]=—2ik=—2ik =T (=K (4.5
. + : . 1-R*(kR™(—k)
[f7(k, x);f (=k,x)]=2ik=2ik =T (=K (4.9
Let an overline denote complex conjugation. It is already krfothat
(k0= (kx), fi(—kx)=f(kx), keC, (4.7
fr(—kx)=f"(k,x), f (-kx)=f"(k,x), keR, 4.9
1 _
— = . keC™\{0}, (4.9
T2(=k) Tk
ST (—k)=S"(k), S (K)S*(—k)'=I, keR, (4.10

wherel is the 2X 2 unit matrix and the superscriptienotes the matrix transpose. It is understood
that (4.10 holds only at the points where the scattering coefficients are defined; we will see later
that S*(k) may not be defined for certain real valueskof

From (4.10 we see that

T5(=Kk)

T 0= = R (R

and therefore

T=(K)
T (K’

det S*(K) =T (k)2—L*(k)R* (k)= keR. (4.1

It follows from (4.9) that the zeros of T/~ (k) either lie on or are symmetrically located with
respect to the imaginary axis @; in particular, 1T (k,) =0 for somek, e R\{0} implies that
LT (—kg)=0.

___ Proposition 4.1:AssumeP,Q e LY(R). Then:(i) 1/T* (k) are analytic inC", continuous in
C"\{0}, and bounded in the sectdke C":|k|=a>0} for every a>0. If, in addition,
QeLi(R), thenk/[(k+i)T=(k)] are continuous and bounded @, andkL*(k)/T*(k) and
k_Ri(k)/Ti(k) are continuous and boundedf ConsequentlyT (k) cannot have any zeros in
C*\{0}. (ii) The zeros ok/[(k+i)T*(k)] in C* are all isolated, and their accumulation points,
if any, must lie on the real axis or at infinity.

Proof: All the assertions follow fron{4.3), (4.4), (4.9), and Theorem 2.1. |

Note that contrary to the case whdpPéx) is either zero or purely imaginary, we canret
priori rule out possible singularities of the scattering coefficiditgk), R*(k), andL*(k) on
the real axis. In Examples 11.2 and 11.4, we show thEt () may have zeros oR or off the
imaginary axis inC*.
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Proposition 4.2:AssumeP,Q e LY(R). Then, for anyk, e R\{0}, the quantities " (ko) and
R*(ko)/ T (ko) cannot be zero simultaneously; similarlyT1{k,) andL™=(ko)/T*(ky) cannot
be zero simultaneously. If T/ (ko) =0 for someky e R\{0}, then none of the eight quantities
R™(Ko)/ T (Ko), L™ (ko)/T*(Kg), R*(—ko)/T=(—kg), L*(—ko)/T*(—ko) are zero. Moreover,
R™ (k) is continuous fok € R\{0} if and only if 1/T* (k) does not vanish fok e R\{0}. Similarly,
L* (k) is continuous fok e R\{0} if and only if 1/T* (k) does not vanish fok € R\{0}.

Proof: By Proposition 4.1 we know that T7 (k), R*(k)/T*(k), L*(k)/T*(k) are continu-
ous whenk e R\{0}. Moreover, the right-hand sides {@#.5 and (4.6) cannot be zero whek
#0. |

Note that, if 1T*(ko)=0 for somekye R\{0}, from (4.2 we see thatf"(k,,x) and
f (ko,x) are linearly dependent, and froth.3) and(1.4) we obtain

fi'(ko,X) L*(ko) T*(ko)
f(ko,X) TH(ko) R(ko)

Moreover, if 1T (k) =c(k—kg) ™+ 0o(k—ko)™ ask— kg, for some nonzero constaatand posi-
tive integerm, then R(k)=d(k—kg) "™+o(k—ky) ™™ as k—kgy with d#0. Thus, we see that
T7(k) is continuous foik € R\{0} if and only if R* (k) [or L* (k)] is continuous.

Proposition 4.3:AssumeP,Q e L1(R). The scattering coefficients satisfy

1 LR (e . ,

|Ti(k)|2_l+ T2 ﬁufﬂcdx|fI (k,x)|*P(x), keR\{0}, (4.12
I RE(K)|? (= N ,

|Ti(k)|2_l+ =M +f7wdx|fr (k,X)|?P(x), keR\{0}. (4.13

Hence, ifP(x)<0, then 1T " (k) cannot have any zeros fére R, and we have
ITH(K)[2+|LT(k)|?’<1, |TH(K)|*+|RT(k)|?’<1, keR\{0}. (4.14
If 1/T" (k) does not have any zeros fke R\{0} andP(x)=0, then we have
ITHK)[?2+ LT (K)|>=1, |TH(K)|?*+|R"(k)|>=1, keR\{0}. (4.19
Moreover, if P(x)<0, then T (k)|=1/T (k)| for ke R\{0}.
Proof: From (1.1) and(1.2) we obtain

d
g LT (ko037 (k0 ]= £ 20K (= k0 (K 0 P(X), (4.16

% [f, (=K, x);f (K, x)]==2ikf (—k,x)f (K, X)P(X). (4.1

Hence, using1.3), (1.4), (4.8), (4.10 in (4.16 and (4.17), for ke R\{0}, we obtain(4.12 and
(4.13, which imply (4.14 and (4.15. The last inequality follows from(4.10 by subtracting
(4.12 from (4.13. [ |

V. SMALL- k ANALYSIS OF SCATTERING COEFFICIENTS

In this section we analyze the sméllasymptotics ofS™(k). Our results will depend on
whether we are in the generic or the exceptional case.

Proposition 5.1:AssumeP e L}(R) andQe Li(R) and suppose that we are in the generic
case. TherR*(0)=L*(0)=—1, T*(k) vanish linearly ak—0 inC*, and
i 2ik i 2ik i 2ik 5.1
im ——~=Ilim ——=1Iim . .
k—0 T+(k) k—0 T (k) k—0 T[O](k)
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Furthermore, de*(0)=—1, and

JZ.dy Qy)fi0y)

T=(K)= +o(k), k—0 in C*. (5.2

Proof: (5.1) follows from (4.2) and Theorem 2.%ii). Since genericallyR?J(0)=L[%}(0)
=—1, from (4.3 and(4.4) in the limit k—0 we getR*(0)=L*(0)=—1. Then, usind4.11) we
obtain detS*(0)=—1. From(2.8) and(5.1) we obtain(5.2). [ |
Under stronger conditions dd andQ, the smallk asymptotics of the scattering coefficients
in the generic case were knoWsee, e.g., Ref. 2 in the case with imagin&gx) ]. Next we study
the smallk asymptotics of the scattering coefficients in the exceptional case, and we show that
S*(0) is affected byP(x).
Theorem 5.2:In the exceptional case, under the assumpti®3 e Li(R), we have

oy 2y
T(0)= Y+ 1% [% dx P(x)f{°(0,x)?’ 63
LY 1E]7dx OO0, x)?
L= (0= Y+ 1% [*_dx P(x)f{°(0,x)?" 64
1—y2£ [ dx P(x)f]?(0,x)?
R=(0)= =Y JZodx P(X)Fi7(0, %) 55

Y+ 1% [% dx P(x)f}°(0,x)?’

where vy is the constant defined if2.9).

Proof: The technical details of the proof are given in the Appendix. As in the 43¢
=0 the difficulty is to prove that the transmission coefficients are continuckis @t This is only
straightforward ifP,Q e L3(R) as® in the caseP(x)=0, but not if P,Qe L}(R). We obtain
T7(0) in (5.3 by using(A18) and (A19) in (A17) and also usindg4.2). The value ofT ~(0) in
(5.3 is obtained by changing the sign &(x). In order to obtainL™*(0) in (5.4), as in the
displayed equation followingA32) of Ref. 12, we first derive

fI0,0Lf]" (k,x);f, (—k,x)]

= f,‘(—k,O)[ —ikf,(0,0+f(0,0+ f:dz dikP(z)+Q(2)]¥(k,z)

—f,"(k,0) —ikf,(o,0)+f((o,0)—f dz ikP(z)+Q(2)]¥(k,2) |, (5.6

where ¢(k, x) is the function in(A2). Estimating various terms if5.6) as in the proof of
Proposition A.4 in connection witA17), and also by using4.3), we obtainL*(0) in (5.4).
Similarly we obtainR* (0) in (5.5). The values ol ~(0) andR™(0) are obtained front.* (0)
andR*(0) by changing the sign d?(x). [ |

In the exceptional case, it is possible tigt(k) is discontinuous ak=0, and as seen from
(5.3—(5.5) this happens if and only iff*_ dx P(x)f[°(0,x)?=+(y?+1). For example, if
Q(x)=0, we havef{?(0,x)=f!%(0,x)=1, and hencey=1. Thus

1 1~
=0) —1+§ J’iwdx P(x). (5.7

Hence, if[* .dx P(x)=*2, thenS™(0) is undefined.
We remark that in the exceptional case, wign(k) is continuous ak=0, we can obtain
(5.3—(5.5) also as follows. In4.1) let k—0 and usg2.7) and(2.9) to get
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_ffox _ TH0) _ T%0) _1+L%0) 1+4L%(0)
YTFR0,x)  1+RT(0) 14RO T0)  T°(0)

(5.9

Combining(5.8) with (4.12 for k=0 and eliminating_*(0)/T*(0), we get

2 )
1+ 92— =7 :tf dx P(x)f[°0,x)2,

which gives ug5.3). Then, using5.3) in (5.8) we obtain(5.4) and(5.5).

In the exceptional case, sin€2(0) is real valued, fron(5.8) it is seen thaB™(0) is a unitary
matrix if and only if R*(0)=—L"(0). By (5.4 and (5.5, this occurs when the integral
J7..dx P(x)f[°/(0x)? vanishes in which case we hagé (0)=9°(0) and deS*(0)=1.

From the discussion above and Theorem 5.2 we obtain:

Proposition 5.3:Assume thatP e L}(R) and Qe L}(R) in the generic case and thB,Q
€ L}(R) in the exceptional case. If any one of the quantities T*1K),
R*(K)/T*(k),L*(k)/T*(k) is discontinuous ak=0, then all six are discontinuous k=0 and
we are in the generic case. If any one of the quantiti@s (), R*(k)/T*(k), L*(K)/T=(k) is
continuous atk=0, then all six are continuous &=0 and we are in the exceptional case.
Moreover, the three quantitids' (k), R*(k), L* (k) [or T~ (k), R™(k), L™ (k)] are all continu-
ous onR, or they are all discontinuous dR.

VI. LARGE-k ANALYSIS OF SCATTERING COEFFICIENTS

In this section we analyze the largeasymptotics ofS*(k). Similar results were obtained
under stronger conditions dA(x) and Q(x) [see, e.g., Ref. 2 in the case with imagin&{x)].
Theorem 6.1: AssumeP,Q e LY(R). Then

Tt—(k) eip=1+o(1), k—oo in F, (6.1
R* (k) (k)
Ti(k)_o(l)’ Ti(k)zo(l)’ K— * oo, (6.2

wherep is the constant defined if8.2).
Proof: From (4.2) using(3.3) and(3.4), we obtain

e*P=[2ik = P(x)] 7 (K, X) 7 (K, X)+ 1" (K, X) 7 (K, X) — 75 (K, X) 7" (K, X).
(6.3

T=(k)

Now (6.2) follows from (3.7), (3.8), and(6.3). Similarly, using(3.3), (3.4), and(4.4), we have

2ikR*(k o _

—?I(())ZeZ'kx+p+2§[7]:(k,X);nr(—k,x)], keR, (6.9
and the first relation ir(6.2) follows by using(3.7) and(3.8) in (6.4). The proof of the second
relation in(6.2) is analogous, usin.3). |

Note that from(6.1) it follows that e is known when either off (k) is known. From
Proposition 4.1 and Theorem 6.1, we have:

Corollary 6.2: AssumeP,Q e LY(R). If 1/T*(k) does not vanish fok e R, then its number
of zeros inC™ is finite.
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VIl. PERTURBATION OF SCATTERING COEFFICIENTS

In this section we establish the stability off1/(k), R*(k)/T*(k), andL " (k)/T* (k) under
small perturbations dP andQ in the norm of eithet. }(R) or L}(R). We will not state the results
for R*(k)/T*(k), since they are identical to those far' (k)/T* (k). An application of these
results will be given in Sec. IX.

Given two sets of potential®;(x) and Q;(x) with j=1,2, we consider the generalized
Schralinger equations

o (k) + K2 (K, ) =[TkPj(x) + Q;(x)1¢ (k, X), XeR, (7.2

and denote their corresponding Faddeev solqunmb)(k X) andm,: l(k X), their transmission
coefficients byT (k), and their reflection coeff|C|ents from the right and from the Iefﬂ?)(k)
andL (k), respectlvely

Proposmon 7.1:AssumeP;,Qj e LY(R) for j=1,2. Then forke C* with |k|=1, we have

1
Tf(k)_ T;(k) <C([P1=Paf1+[Q1=Q2ll1), (7.2
and forke R with |k|=1, we have
Ly (k) Lo( k)| _
Trk0 Tak|~ CUP1=Pala+Qu=Qally). (7.3

Proof: First, by iterating(2.1) and using(2.3), we obtain

[y (K, x) = mﬁz(ka X)|<Cq([[P1—Pol1+Q1—Q2ll1), (7.4

for some constant,. Furthermore, from(1.3) and(2.1) we obtain

1 1 % .
=10~ L 2 | LAY [EKPO)+Q)IME (ky), 75
L=(k 1 X
TiEk; 2ik f dy e 2% +ikP(y)+Q(y)Imi (k,y). (7.6)

Now using(7.4) in (7.5 we get(7.2). The proof of(7.3) is similarly obtained by using7.4) and
(7.9 L n

Proposition 7.2:AssumeP; e L}(R) andQ; e L}(R) for j=1,2. Then, forke C* with [K|
<1, we have

k k
AL | 3 N ~ |
’(Tf(k) T;(k))‘<c(”Pl Pall1 Q1= Q10 7.7)
and forke R with |k|<1, we have

kLi (k) kL3 (K| _
Ty (k) T,(k) <C([P1=P2[1+[Q1—Qall1,0)- (7.9

Proof: Iterating (2.1) with the help of(2.4) and the inequality

1+maxX0,—-y} 14 _ g
m(y x)=<1+ly|, y=x, (7.9

we obtain
kmy'i(k, )| <Cy,  [K|<1 (7.10
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Imi%1(k, x) =myi,(k, X) < Co[ 1+ max{0,— x} (| P1— Pyll1 + Q1 — Qall1.0), (7.1
[kmy(k, x) —kmy’,(k, X)|<C3(|P1— Pl +[Q1 = Qall10).  [k|<1, (7.12

for some constant€;, C,, andC3. Then(7.7) and(7.8) follow from using(2.4), (7.10—(7. 12)
in (7.5 and(7.6).
Proposition 7.3:AssumeP;,Q; e Ll(R) for j=1,2 andQ4(x)=Q,(x). Then, we have
‘ 1

R < . — |
T]J_r(k) —T;(k) <C||P1 P2||1’1, kE C , (7 13

Ly(k) Li(k)
‘1 2 <C|P—Pyl11, keR. (7.14

Ti(k) T5(k)
Proof: First from (2.4), (7.9), and(2.1) we get
M3k, ) —myE(K, X)| < CylK|[1+max{0,— x}][[P1— P2 1,1, (7.19

for some constan€,. Using (2.4), (7.11), and (7.19 in (7.5 and (7.6) we obtain(7.13 and
(7.149. [

VIIl. BOUND STATES AND JORDAN CHAINS

Recall that the bound states (f.1) are its nontrivial solutions belonging &?(R). In this
section we show that the zeros offT/(k) in C™ correspond to the bound states(bfl). We also
analyze the order of each zero offf/k) in C* in terms of Jordan chains of the differential
operatorW (k) defined in(8.3).

Proposition 8.1:AssumeP,Q e L}(R). A pointk,e C* corresponds to a bound state(f1)
if and only if 1/T* (ko) =0. If kge R\{0} and 1T *(ky) =0, thenk, does not correspond to a
bound state of1.1); if we further assume) Li(R), thenk=0 cannot correspond to a bound
state even when I/ (0)=0.

Proof: The first assertion follows front4.2) and Theorem 2.%i). For koe R\{0} every
nontrivial solution of(1.1) has the asymptotic form, e'ko*+ c_e ™ o*+0(1) asx— + o, with the
constantc, andc_ not both equal to zero, and hence cannot be3(R). If Qe Li(R), then
ko=0 cannot be a bound state because any nontrivial soluti¢h Hffor k=0 has the asymptotic
form cix[1+0(1)]+cyo+0(1) asx— +, with ¢, andc, not both equal to zero. Hence, the
proof is complete. ]

Next we analyze multiple poles @ (k). Let us differentiate(1.1) with ¢="f"(k, x) or &
=f " (k, x) with respect tck repeatedly. Defining

1 a\" a\"
gﬁn(k,x)=m(£) fr(k,x), g:n(k,x)zn— &) fr(k,x), n=0,12,.., (8.0

and gffn(k, x)=g,fn(k, x)=0 for n=—-1,—-2,..., we obtain the coupled system of differential
equations

grr;'(k, X) + kzgl-*,—n(kl X) + 2kgl-',—n—l(k! X) + gl-t—n—Z(kv X)
=[ikP(x)+Q(x)1g/n(k, ) +iP(x)g{’y_1(k, %),

(8.2
97 n (K, X) +K2g] n(K, X) +2kg 1 (K, X) +9/ - o(K, X)
=[ikP(x)+Q(x)1a; n(K, X) +1P(X)g;"_1(K, X).
Defining the differential operator
2
W(k)=— +ikP+Q, (8.3

S
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o) thatW(k)= —2k+iP and\)V(k): —2l, we obtain the system of linear equations

T(K)g' (k,x)=0, (8.4
whereO0 is the zero column vector ah componentsg,” (k, x) is the column vector

[gl-‘,—m—l(k! X)u e lgl-*,—O(k! X)]tl

and T(k) is themXxXm Toeplitz matrix given by

[W(k) W(k) Wk 0 0O 0 -0 O 0

0 Wk Wk Wk 0 0 - 0 0 0

Two=| © 0 Wk Wk Wk O 0 0 0
0 W(k) W(k)
I 0 0 WK]

Using the Leibnitz formula for repeated derivatives of products, we find f#®®2)

1

d\" —2ik
nt

ak a0~ 2 Lok ik X)) 69

We call kye C* an eigenvalue ofV(k) if there exists a nontriviakp e L?(R) such that
W (ko) ¢=0. Because of Proposition 8.1, this is equivalent {6"{k,) = 0. Further,¢ is called an
eigenfunction ofW (k) corresponding to the eigenvallig. More generally’® if k, is an eigen-
value of W(k), then the string of functiongy,...,¢om_1 in L?(R) is called a Jordan chain of
length m corresponding to the eigenvaluk, if ¢o#0 and (8.4 holds with
[0/ m_1(Ko.X),....0/'o(Ko, X) ] replaced by the column vectpty,_1(Kg.X),....¢0(Ko, X)1".

Proposition 8.2: Assume P,QeL!(R) and letkoeC* be an eigenvalue oW(k). If
{gr’j(ko,-)}}";o1 is a Jordan chain oiV(k) of lengthm at the eigenvalu&,, then forn=0,1,...,
m-—1, we have agx— *

Gi'n(Ko, X)=OL(L+[x))"e~ M ka], - g (ko, x)=O[(1+[x])"e"M"™ ko], (8.6
9 (Ko, X)=O[(1+|x|)"e"Xmko], g (Ko, x) = O[(1+|x|)"e~ X/ ko], 8.7
Proof: If kye C* is an eigenvalue diV(k), by Proposition 8.1 we haveT/ (k,)=0. Hence
f," (ko, X) andf,"(ko, x) are linearly dependent, and thus we need to pfév® and(8.7) only for
gfn(ko, X) andg,f,{(ko, X). Forn=0 these follow from Theorem 2.1). The following argument
used to prove8.6) and (8.7) for n=m—1 can be used recursively for=1,..., m— 2. Note that,
for eachke C*, (1.1) hag® an unbounded solutiok(k, x) such that
X(k, x)=0(eXmky = X" (k,x)=0(eXmk)  x— *o0, (8.9
Let us choos&X(kg, x) such thaf f;" (ko, X); X(Kq, X) ]=1. Let us considef8.2) as a second-order

linear, nonhomogeneous differential equation gqig],l(ko, X) and solve it by variation of pa-
rameters using the linearly independent solutibfgky, X) and X(kq, x) of (1.1). We obtain

9|J,rm71(k0a X)= amflfﬁ(ko, X) + bm-1X(Kg, X) — fo dy(iP(y)— 2k0]g|J,rm72(kOvy)

~ 01 m-3(ka, YL (Ko, X)X (Ko, Y) = " (ko,¥) X(ko, X)1, (8.9
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with arbitrary constants,,_, and b,,_;. Since g|‘n(ko,-)eL2(R) for n=0,1,..., m—2 and
X(kg, X) is unbounded ag— =, the term proportional tX(kg, X) in (8.9) must vanish. Thus
we must have

b1+ | GYTIP ()~ 2kl (koY) ~ G- ako DI (o) =0,

b1 | 9YEP ()~ 2Ko10 (Ko Y) = G- a koY (Ko ) =0,

and hence

| aviP )~ 2kel0 - skoy) - a(koy T} (koy)=0. (810
Using (8.10, we can write(8.9) as
9 m—1(Ko, X)=A(Kg, X)X(Kg, X) + ;" (Ko, X)
X

an -1 [ VTP (Y) - 26107 - 2(Ko)~ G s(KoyDX(Koy) |

(8.11

where we have

f_md)/([i P(Y) = 2kol9im-2(Ko,Y) = 9i'm- (ko YDf " (Ko,y),  x=<0,

Atkox)={ (8.12
| Ay )~ 210 - alKorY) ~ i a(KoV D (o), X0,

Using (8.6) for n=0,1,...,m—2, (8.8), and(8.12, we obtain(8.6) for gffm_l(ko, x). Differenti-
ating (8.11) and using(8.10), we obtain

gﬁré_l(ko, X)=[am-1— 111" (Ko, X) + X' (Ko, X)1 2(X),

where

11(x)= fOXdY([i P(Y) = 2Ko]9i'm-2(Ko,Y) — 9m- (Ko, Y))X(Ko,Y),

1200~ [ dYP Y~ 2Kl olkeY) = 8- skon YD (ko).

Finally, we obtain(8.7) for g,fr;,l(ko, x) by using(8.6) for n=0,1,...,m—2, (8.8), and(8.12.1
Proposition 8.3:AssumeP,Q e L}(R) and letkoe C* be an eigenvalue oV (k). Then for
n=0,1,...m—1, we have

| aviP)-2kalgin- a0y = 0l alko i (ko) =0 ®13

if and only if {gfj(ko,-)}?‘;ol is a Jordan chain oW(k) of length m corresponding to the
eigenvalueky.

Proof: If (8.13 holds forn=1, then we must havg' (ko,-) € L%(R); from Proposition 8.2
and its proof it is seen thft" (ko,-) € L3(R) only if g'o(ko, X)=1f," (Ko, X) is an eigenvector of
W(K). Recursively, we can show thgﬁfn given in(8.1) satisfieq8.4), (8.6), and(8.7), and hence
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9/'n(ko,-) e LA(R) for n=1,...,m—1. Thus{g,;(ko,-)}]=" is a Jordan chain ai(k) of lengthm
corresponding to the eigenvallig. The converse is proved by proceeding recursively as in the

proof of Proposition 8.2 leading t®3.10. |
Theorem 8.4: AssumeP,Q e L1(R) and letkoe C*. Then the following four statements are
equivalent:

(8 W(k) has a Jordan chain of length corresponding to the eigenvalisg.

(b) {gfj(ko,-)}}“:’ol is a Jordan chain dfV(k) of lengthm corresponding to the eigenvallg.
(©) {gf’j(ko,')}}“:—o1 is a Jordan chain ofV(k) of lengthm corresponding to the eigenvallg.
(d) 1/T*(k) has a zero ak, of order at leasm.

Proof: Clearly (b) implies (a). Now assumda) holds and Iei{¢j}?’:_01 be a Jordan chain of
W(k) of lengthm at the eigenvaluk,. Theng, must be proportional té," (ko, x) andf," (ko, X)
because the latter two are linearly dependent épiky, X) is a solution of(1.1) for k=kg,. Thus
we haveW(ko)glfO(ko, X)=0 and consequentl{B.2) is satisfied fom=0,1,...,m— 1. Hence(b)
holds.

Note that(b) and (c) are equivalent because, (ko) g, o(Ko, X) =0 for somekye C* and
9/'o(ko.-) € L3(R), by Proposition 8.1 we must haveTl/(k,) =0 and hence, (ko, X) must be
a constant multiple ogffo(ko, X).

If (b) holds, then(8.6) and (8.7) must hold forn=0,1,....m—1 because of Proposition 8.2.
Then, forn=0,1,...,m—1, by evaluating the right-hand side @&.5 atx= —« or atx=+«, we
find that its left-hand side must be zero and tidisholds. Now assume thatl) holds and let us
show that(b) is true. By Proposition 8.3 it is sufficient to show th@ 13 is satisfied forn
=0,1,...,m—1. We will do this recursively. First notice th&8.13 trivially holds for n=0 be-
causeg,”_;(ko, X)=0,"_,(ko, x)=0 and that(8.6) and(8.7) hold for g’y andg,’y , respectively,
because I*(ko)=0 and thusf, (ko, x) is exponentially decaying d|—o. Forn=1,...,m
—2, the proofs 0f8.13 and of(8.6) and(8.7) for g,fn andgffn’ , respectively, are similar to the
case whem=m-—1. Thus, it suffices to give the proofs for=m—1 by assuming that these
equations hold fon=1,...,m—2. Using (1.1) for g,’,(ko, x) and (8.2) for g,fm_l(ko,x), we
obtain the Wronskian relation

d
~ dx [gr,rm—l(kOa X );g:"o(ko, x)]=([iP(x)— 2k0]gl-t—m—2(k01 X)— gfm—s(km X ))gﬁ,o(ko, X).
(8.19

In a similar way, we obtain

d
ax [9/0(Ko, X); 0/ m-1(Ko, X) 1= ([IP(X) = 2Ko19, m— 2(Ko, X) =9, m—3(Ko, X))9; o( Ko, X).
(8.15

Integrating(8.14) and(8.15 we get

| ay (1P5) -2kl a6~ - ko o ko)

= lim [g{’n_1(ko, X);9/ o(ko, X) 1= lim [/’ 1(ko, X);970(ko, ¥)],  (8.16

X— — X— +

| dy (P&~ 2Ko10/ - sk~ 0 -t ko0 koY)

= lim [g/'o(ko, X);9; m-1(ko, X)]1= lim [g/'g(ko, X):9/ m-1(ko, ¥)]. (8.7

X— +0 X— —

Becausg8.6) and(8.7) hold forn=0,1,...,m—2, we have
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m—2

lim 2 [9/" (Ko, X);m_ (Ko, X)]=0. (8.18

x—+ow]=1

Since 1T (ky) is assumed to have a zero of order at leastising(8.5) for n.=m—1 and(8.18),
we obtain

lim ([9yo(Ko, X); 9 m-1(Ko, X) 119/’ m-1(Ko, X); 8¢ o( Ko, X)) =0. (8.19

X— o

Using the linear dependence cg‘,fo(ko,x) and g:fo(ko,x) and the exponential decay of
gﬁm,l(ko,x) asx— +w and ofgrfm,l(ko,x) asx— —oo, we first conclude that

lim [9," - 1(Ko, X);9, o(Ko, X)1=0,  lim [g/'o(Ko, X):0, _1(Ko, X)]=0. (8.20

X— + oo X— —

Now, from (8.19 and(8.20 we see that

lim [97m-1(ko, X):97o(ko, X)]=0,  lim [g/'o(ko, X);9/ m-1(ko,¥)]=0,  (8.2D)

X— X— +®

and thus using8.20 and(8.21) in (8.16 and(8.17), we get

| dy (PO~ 2K6151 - s(KoV) - G- ko ) o ko) =0

Thus(8.13 is proved forn=m-—1, and hencéb) holds. |

IX. BOUND STATES AND POLES OF T*(k)

In this section we further analyze the polesTaf(k) in C*. We show that such poles cannot
occur in certain regions ilC" determined in terms of the constants defined(9r1). When
P(x) =<0, we show that such poles are confined to a certain interval on the positive imaginary axis.
We analyze the change in the number of bound states WhemdQ are perturbed. In the generic
case we find that the number of bound states is unchanged under small perturbaRossddd;
in the exceptional case we find that the number of bound states is unchanged under small pertur-
bations ofP(x). WhenP(x)<0 we show that the number of bound states is independent>gf.
We also present a Levinson theorem relating the number of bound states to the change in the
argument ofT " (k).

Next we obtain some simple conditions &{x) and Q(x) guaranteeing that there are no
bound states outside certdirregions inC* determined by the following parameters:

Pmin=e€ss inf P(X), Ppa=e€ss supP(X), Qmin=e€ss infQ(x). (9.1

XxeR xeR xeR

Let us also defing8* =P,,,/2+ \/sz +/4— Qnmin- Note that ifP,Q e L1(R), then it follows that
Pmac=0 with the equality holding if and only iP(x) <0, thatQ,,;y<0 with the equality holding
if and only if Q(x)=0, and thatP,,,<0 with the equality holding if and only ifP(x)=0.
Furthermore 8* = P, with the equality holding if and only iQ(x)=0. Note also tha3* =0
with the equality holding if and only iP(x)=Q(x) =0; hence, the casg* =0 is trivial.
Theorem 9.1: AssumeP,Q e LY(R), P(x)#0, and Py, is finite. Then forP,/2<Imk
<* the zeros of I+ (k) can only occur on the imaginary axis, and all such zeros are simple. If,
in addition, Qi is finite, then there are no zeros ofT1/k) in the region{ke C":(Im k)?
—(Rek)?—(Im K)Prma=—Qmint. Consequently, T7* (k) has no zeros iilC* satisfying Imk=*.
Proof: From (1.1), after using(4.7), we obtain

d —
5 (T (Ko 0 (ko X0 b= 1 (Ko, )[4 = K+ ikoP(0) +QUOTI (Ko, W% (92
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If kye C* is a zero of 1T *(k), then by integrating9.2) and using4.7) and Theorem 2.1), we
obtain

f dx [f;"" (ko, X)|2=f dx [k§—ikoP(x) = Q()1If" (ko, X)[2. 9.3
Letting ko= +i B and separating the real and imaginary part§9ii3), we obtain

iaf_ldx [28= PO (ko X)|*=0, (9.4)

f:dx [ (ko )|2= f:dx [a®= B2+ BP0 = QOO (Ko, )| 9.5

From (9.4) we see that we must have= 0 whenP,,,,=<283, and hence any zero of Tlf (k) with

Im k=P,,/2 can only occur on the positive imaginary axis. All such zeros are simple; otherwise,
a zero of order two or higher would imply8.13 with n=1, ie., [Z_ dx[P(x)—

2 Im kgl |f;" (ko, X)[?=0, which cannot happen if Itky=P,,/2. From(9.5) we see that we cannot
have a®— B2+ BP(x) — Q(x)<0. Hence there are no zeros off (k) in {a+iBeC":B2—a?

= BPmac—Qnmint- The analysis of the corresponding region in #h@plane indicates that there
cannot be any zeros of LY (k) on the imaginary axis when lik=g*, and hence there cannot be
any zeros of I * (k) either on or off the imaginary axis when lke3*. |

When P(x)=<0, from Theorem 9.1 we obtain the following corollary.

Corollary 9.2: AssumeP(x)<0 andP,QeL!(R). Then, the poles of *(k) in C* are all
purely imaginary and simple. In addition, assume at, defined in(9.1) is finite; then there are
no zeros of I * (k) in C* for Im k=y— Qpin.

Theorem 9.3: AssumeQ(x)=0 andP e L}(R). If [.dx P(x)>2, then(1.1) has at least
one bound state &=i 3 for some positives. If [©_dx |P(x)|<2, then 17" (k) has no zeros in
C*.

Proof: When [ _.dx P(x)>2, from (5.7) we see that 7" (i 8) is negative a3=0 and from
(6.1) we see that it is positive ag— +«. Being a real-valued, continuous function gf
1/T*(iB) must have a zero for some positie Now let us prove the second statement. Assume
ke C* corresponds to a bound state; we can transfdrr) into

etk 0= |~ dy Akxyeky), 06

where we have defined
o(k, x)=|P()|Y2" (k,x), Ak;x,y)= 3 *Y|P(x)|¥2P(y)/|P(y)|*2

WhenP e L}(R) andke C", the integral operator if9.6) is Hilbert—Schmidt with the Hilbert—
Schmidt norm

1 21Es=3 f wdxf ~_dylPe)le VI P(y)],

and hence, ike C* and [”_dx |P(x)|<2, we havg|.7|ys<1. Thus the operator norm of that
integral operator is also strictly less than 1 and hegaee0, implying that there cannot be any
bound states of1.1) for ke C*. [ ]

It is already knowfithat if Q e L}(R), then the number of bound states f@r6) is finite; let
us denote that number by, and letiky,...,ix ;- with 0<k;<...<k ,- denote the zeros of
1/T0(k) in C*. In the following, we generalize the second result of Theorem 9.3 to the case

Q(x) 0.
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Theorem 9.4: Assume P,QeLi(R). The k-values in C* satisfying [*_.dx |ikP(x)
+Q(x)|=<2|k| cannot be zeros of I/ (k). Moreover, there are no zeros of TT/(k) in
C"\{iky,....ix,} satisfying| TPV (k)| [P ;<2e 191,

Proof: Letke C* correspond to a bound state(df1). We can transforngl.1) into (9.6) with

¢(k, x)=[ikP(x)+Q(x)| "4 (k, ),

[IkP(y)+Q(y)]
likP(y)+Q(y)|¥*

A sufficient condition for the absence of bound statgs48|,s< 1. Proceeding as in the proof of
Theorem 9.3, foke C* we obtain||.7||ys< [ ..dx |ikP(x)+Q(x)|/(2|k|), and hence there are

no zeros of I (k) at thek-values inC™ satisfyingf” .dx |ikP(x) + Q(x)|=<2|k|. In the special

case P(x)=0, this implies that there are no bound states whidn> [~ _dx |Q(x)|/2. To

prove the second part of the theorem, we note that the kernel of the resolvent of the operator
[ —d?dx?+Q(x) —k?] L is given by°

1
kX YI[ikP(x) + Q(x)| 2

B X,Y)=—
(k;x,y) ik

e = PRI 0T y) + 0=y AP 0 1) ko)
./2( ,X,y)_ [fl[O](k’),fEO](k’)] ’

9.7

wheref[%(k, x) and fl%!(k, x) are the Jost solutions ¢2.6) and #(x) is the Heaviside function.
As seen from(2.8), the Wronskian in(9.7) is equal to— 2ik/T[°l(k), and hence we get

lik| P(x)[*222(k; x,y)P(Y)!| P(y)|*3l5s= 3| T (k)| 2C(k), (9.9

where we have defined

co= | axIPeallfk 02 [ ay k) PIP())

+ [ ax Poollfk 0f2 "y [y PP, 99

Using (2.1) with P(x)=0, we deduce that
191k, x)|<(1+max0,~x})e * mkefxdy (1+yDIRWI ke CF, (9.10

1100k, x)|<(1+max0, x})ex M kelZdy A+MDIQWI ke CF. 9.1

In (9.9), using (9.10, (9.11), and the estimatesAmax0,+x}<1+|x| ande™?* VMk<1 for
+(x—y)=0, we obtain C(k)|<||P||? %911 Hence the Hilbert—Schmidt norm on the left-hand
side of (9.8) is strictly less than 1, provideld@®!(k)|<2e~I?l1.y||P|, ;. Under this condition on
k, there is no bound state corresponding to thaiC™. |

Let us denote the number of bound stateslof), i.e., the number of zeros of L7 (k) in C*
(including multiplicitieg by N(P,Q). In the next two propositions we obtain some stability results
for N(P,Q) under certain perturbations & and Q. As in Sec. VII, we IetT;’(k) denote the
transmission coefficient corresponding(#®21) for j=1,2.

Proposition 9.5:AssumeP,,P,eL}(R), Q;,Q,¢ L}(R), 1/T{ (k) does not have any real
zeros, andQ4(x) is a generic potential. IffP;—P,[1+[Q1— Q|11 is small, i.e., if(9.13 is
satisfied, then
(@ 1T, (k) does not have any real zeros.

(b) N(P2,Q2) =N(P1,Q1).
(c) If all zeros of 1T (k) are simple and purely imaginary, so are those a%1k).

Proof: Fora>0 letI', be the positively oriented contour consisting of the intefvah,a]
and the semicircl¢k e C*:|k|=a}, and let us choosa large enough so that all zeros off{/(k)
in C* have an absolute value less than Putting Fj(k):k/[(k+i)TJ—*(k)] for j=1,2, from
Propositions 7.1 and 7.2 we get
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Fl(k)_FZ(k)‘< C
F.(K) ‘\ IFL(K)| (IP1=P2ll1+Q1—Q2fl1.0). (9.12

If 1/T{ (k) does not have any real zeros, then in the genericEade cannot have any real zeros;
thus, F,(k) does not vanish od’,. Moreover, by Proposition 4.1 (k) is continuous and
bounded inC". Hence miR.r|F1(K)|>0. Now choosing

1 k
IPy— P2||1+||Q1—Q2||1,1<6 kT'rna m’ : (9.13
from (9.12 we obtain
Fa(k)—Fa(k
M‘<l, kel,. (9.14

Fa(k)
Hence from(9.14) we seeF,(k) cannot vanish o",, which implies(a). Part(b) follows from
(9.14 with the use of Rouchg theorem. Partc) follows by replacingl’, with the union of
N(P,,Q,) small, positively oriented circles centered at the zeros @f (k) and by applying
Rouchés theorem. [ ]
Proposition 9.6:AssumeQ;=Q,=Q in (7.1), 1/T; (k) does not have any real zer@(x) is
an exceptional potential, arh ,P,,Q e L1(R). If |[P;— Py, is small, i.e., if(9.15 is satisfied,
then we have
(@) 1T5 (k) does not have any real zeros.
(b) N(P2,Q)=N(P,Q).
(c) If all zeros of 1T (k) are simple and purely imaginary, so are those 3% 1K).
Proof: We will proceed as in the proof of Proposition 9.5. Let us chdogas in that proof
but defineFj(k)zllTj*(k) for j=1,2, instead. Note thaf(k) is bounded, continuous, and
nonzero onl",. From(7.13 we have

Fl(k)_FZ(k)‘

<C||P1—P3l11-
Fl(k) H 1 2”1,1

From (9.8 we get

Fl(k)_Fz(k)‘< ~
’ Fik) | [Fu(k)] IP1=Pall1,1,

and hence by choosing

1
P,—P <—= min|=—/—, 9.1
|| 1 2”1,1 C ker‘a TI(k) ( 5)
and proceeding as in the proof of Proposition 9.5, we complete the proof. [ |

Theorem 9.7:AssumeP,Q e L1(R) andP(x)<0. Then, eitheN(P,Q) andN(0,Q) are both
infinite, or they are both finite and(P,Q)=N(0,Q). Thus the number of bound states(&fl)
coincides with the number of bound states(216).

Proof: SinceP(x) <0, by Corollary 9.2 we know that the bound stateglof) can only occur
whenk is on the positive imaginary axis. Let us writ¢.1) with k=i8 as two simultaneous
equations:

— Y V(B X)Y=E(B) ¢, (9.19

E(B)=-p% (9.17)
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where g is considered to be a parameter in the potentig, x) = Q(x) — BP(x) of the Schre
dinger equatior(9.16), andE(B) denotes the corresponding energy for eAcltach bound-state
energy— sz of (2.6) gives rise to an eigenvalue brangh(g). From(9.16 we have

<¢/!_P(//>
(py)

where (-,-) denotes the usual scalar product bA(R). If P(x)<0, from (9.18 we see that
E’(B8)=0 and hence eadg;(B) is a nondecreasmg function gf Therefore for,8>0 the graph
of Ej(B) must intersect the parabolB= — 82 at exactly one point, sayf , ,BJ) and each
E; (,6’) gives rise to exactly one solution (8.17). The numbeN(P,Q) is equal to the number of
intersections of the eigenvalue branclig$s) with the parabola given i(9.17) for j=1. Since
each of theN(0,Q) branches is responsible for exactly one intersection, we conclude that
N(P,Q)=N(0,Q). Note that ifQe L}(R) butQe Li(R), it is possible thatN(0,Q) =+, but
then we also havél(P,Q) = +x. |

If P,QeL(R) andP(x)=<0, then eitheN(P,Q) =+, in which case the set of bound-state
energies of1.1) consists of a strictly decreasing sequence of negative numbers converging to 0, or
N(P,Q) is finite and equal to/", in which case we lek=ig; for j= A7 with 0< By
<...<pB_ ,- denote the zeros of If(k) in C*. Since the conditiorQ Ll(R) guarantees the
finiteness ofN(0,Q), from Theorem 9.1 we obtain the following:

Corollary 9.8: AssumeP(x)<0, Q(x)=0, Pe LY(R), andQe L%(R). Then, there are no
zeros of 1T (k) in C*.

In the next theorem, wheR(x)=<0, using the constamR,,,;, defined in(9.1), we obtain some
upper and lower bounds on each bound-state energy. bt

Theorem 9.9: AssumeN(0,Q) is finite and nonzeroP,,, is finite, P(x)<0, and P,Q

E'(B)= (9.18

eLY(R); let k=ix; correspond to the bound states(@f6) for j=1,...,./". Then, the zeros of
1T (k) in C* occur atk=ip; satisfying B, <B;<x; for j=1,...,.1", where B, =P;,/2
++P mz inf4+ Kzl In particular,8,=8, andB ,- <k_,-, with the equalities holding if and only if
P(x)=0.

Proof: At a bound state wittk=i g8; of (1.1), replacingk, in (9.5 by 0+ig;, we get

[ axciagor= [ axi-grepPo-Quli (g% 019

On the other hand, since «?, - is the lowest bound-state energy f@6), we have

L ATOKINB 0% QU 18, 007]
. f dX fl (IBjiX)

(9.20

with the equality holding if and only ifl[o](i K 4y X) andf,*(i,BJ-, x) are linearly dependent. From
(9.19 and(9.20 we obtain

JZ.dx PO)f, (i 8, %)?
J7.dx £7(i8), x)?

(9.21

Since P(x)<0, from (9.21) we see tha]ngk_ - with the equality holding if and only iP(x)
=0 andj=.7" Thusg;e(0,x ] for j= ~J”. Now let us improve the bounds ¢8). From
the proof of Theorem 9.7, recaII that each eigenvalue braﬁ@%) gives rise to exactly one
solution of(9.17) starting with— K at,B 0 and ending with— ﬂ, at 8= g; . SinceE;(B) is an
increasing function of3, we get— =E;(0)<Ej(B))=— ,BJ, and henc$J<K, Now consider
E.(B), the eigenvalue branch corresponding/ip From (9.18 using P,n<P(x), we obtain 0
<E}(B)=<—Pmin; more specifically, 82 E(8) < — Pmin unlessP(x) =0. SinceE;(0)= — 3 and
E.(B) is nondecreasing, we geE,(B8)<-BPmn—k>. Thus from the inequality— 33
s—ﬂlem—Kf, we getB;=p, . Note that the equality ir8;= 3, holds if and only if P(x)
=0 because3, =k, with the equality holding if and only iP(x)=0. |
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From the proof of Theorem 9.9 we get the following corollary that holds even ihénhas
infinitely many bound states.

Corollary 9.10: AssumeP,Q e L}(R) andP(x)<0, and let{ &} and{f({o]} for j=1 denote
the bound-state energies @f.1) and (2.6), respectively, ordered such th&i<%]+1 and #1°
<%, . Then we havezi®< ;<0 for j=1, and hence the bound-state energie€la cannot
occur below the lowest bound state energyb).

Recall that the Levinson theoréhrelates the number of bound states for the usual ‘Schro
dinger equation to the change in the phase of the transmission coefficient. Next we generalize the
Levinson theorem t@1.1).

Theorem 9.11:Assume thaP e L(R) in the generic case arfdle Li(R) in the exceptional
case and tha L}(R), and suppose T/ (k) does not have any real zeros. Then the number of
bound states of1.1) is given by

argT"(0+)=m N(P,Q)—g}, (9.22
whered=0 in the exceptional case art=1 in the generic case, and afg(k) denotes the
continuous branch of the argument®f (k) normalized such that aff" (+«)=0.

Proof: Forb>a>0, letI', , be the positively oriented contour consisting of the circular arcs
{ke C*:|k|=a} and{ke C*:|k|=b} and the segmenfs-b,—a] and[a,b]. Let us choosa and
b so that all zeros of I/" (k) in C* are enclosed by, ,. By the argument principle we have

T (k)

2ai Iy, TR

1
N(P.Q)= 5= Ar, Jarg T (K], 9.23

whereAr [argT+(k)] indicates the change in the argumentTof(k) whenT, , is traversed
once. Th|s change is independentaofand b, and hence we evaluate it by lettimg—0 andb
—+o, By Theorem 6.1 the contribution to that change from the large semle[kM:*.|k
|=b} vanishes ab— +=. In view of (5.2) and(5.3), we see that the contribution from the small
semicircle

{ke C*:|k|=a} in the limit a—0 is equal to O in the exceptional case andr in the generic
case. Thus the contribution from the interval &) is given by argr*(+w«)—argT"(0+)
=—argT"(0+). By the first equality in(4.10), the contribution from the interval-{,0) is the
same. Hence, the right-hand sidg®23) is equal to (1#)arg T (0+) in the exceptional case and
(1/2)+ (1/m)argT*(0+) in the generic case, which gives (&22. |

Finally, let us show that in the special case wieandQ have support in a half-line, we can
relate the poles of the transmission coefficient to the poles of a reflection coefficient. Since there
is no loss of generality in choosing our half-lines R$=(0,+%«) or R~ =(—,0) instead of
(a,+>) or (—=,b), respectively, for some constanégsand b, we will state the following
proposition usingR=.

Proposition 9.12:AssumeP(x)=Q(x)=0 for xeR™ and P,QeL}(R"). ThenL" (k) is
meromorphic inC™ having poles coinciding with the poles &f (k). Furthermore, none of the
zeros ofL " (k) coincide with the poles of *(k) in C*. These assertions remain validRf and
L* (k) are replaced bR™ andR*(k), respectively.

Proof: If P(x)=Q(x)=0 for xeR™, from Theorem 2.1(i), we see thatf,"(k,0) and
f;"'(k,0) are analytic irC*. Hence using1.3) we can conclude that* (k)/T* (k) is analytic in
C*, allowing us to conclude that the poles bbf (k) and T*(k) must coincide inC*. Since
f,"(k,0) andf,"’(k,0) cannot vanish simultaneously, it follows thaf 1(k) and L *(k)/T* (k)
cannot vanish simultaneously @, and hence the zeros bf (k) and the poles of * (k) cannot
coincide inC*. The proof wherP andQ have support iR~ is obtained in a similar mannd.

X. EIGENVALUE CURVES AND ZEROS OF JOST SOLUTIONS

In this section we study the zeros of the Jost solutiond df for a fixedke C* and analyze
the number of such zeros in relation to the bound staté4.df and(2.6). As in Sec. IX, we let
N(P,Q) denote the number of bound stateqdfl). WhenP(x)<0 we show that the number of
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zeros of the Jost solutions ¢£.1) is related toN(P,Q) in a simple manner, and we present some
examples showing that this relation does not hold in general. We establish the connection between
the results of Sec. VIII on Jordan chains and certain zeros of the Jost solutighshofThis
connection uses the eigenvalue branches introduced in the proof of Theorem 9.7. We also show
that the number of bound states(af1) with real energies is greater than or equaN(®,Q).

In the first proposition, we collect some results about the oscillation properties of solutions of
generalized Schringer equations related by inequalities involving the coefficients. Although the
methods for proving such results are famifi&f? we include a proof for the convenience of the
reader.

Consider the pair of generalized Sctiimger equations

X},(/-L!X)_/-LZXj(/-L!X):Vj(/-L!X)Xj(/-L!X)! ,U,?O, j:112- (101)

Note that if we letVj(u, x)=—uP(x) +Q(x) in (10.1), we get(1.1) for k=i .

Proposition 10.1:AssumeV,~(,u,~)eL1(R) if u>0, V,-(O,-)eL}(R), and Vi(uy, X)<
Vo(uq,X) ifO<pui<u,. Let x1(uq,X) andy,(u,, X) denote two nontrivial solutions @fL0.1)
with the corresponding coefficients; (w1, x) andV,(w,, X), respectively. Then:

(i) Supposey,(u2, X) has two successive zerasand b with a<b. If 0=<pu;<u,, then
x1(m1, X) has at least one zero imap). If 0<u,=pu, andV (uq, X)#Vo(u1, X) 0on (a,b), then
x1(m1, X) has at least one zero imp). If 0<pu;=wuy, Vi(1,X)=Vy(uq,x) on (a,b), and
x1(w1, X) andy,(uq, X) are linearly independent ira(b), theny (x4, X) has exactly one zero in
(a,b).

(ii) Supposeyx,(us, X) remains bounded as— +o. Let a denote the largest zero of
x2(u2, X), and seb= +o0. Then the assertions @f remain true if we replace the interva,b)
by (a,+®).

(i) FO<pu <y, x2(us, X) is bounded ag— +o0, andx4(u1, X) has no zeros iR, then
x2(m2, X) has no zeros iR either.

(iv) If x2(us, X) is bounded ax— —o anda is the smallest zero af,(u», X), then the
assertion of(iii) holds, and the assertions (i) remain true if we replace the intervah,b) by
(—x,a).

Proof: We will omit the proof of(i) because on a finite interval such results are kn@svg.,
Theorem 1.1 on p. 208 of Ref. RMoreover, our proof ofii) is easily modified to prové). The
proof of (iv) is analogous to the proofs Gf) and(iii ), and hence we will only provéi) and(iii ).

(ii) The proof can be given using contradiction. Without loss of generality we may assume
that y;1 (1, X) andx»(uo,, X) are strictly positive in 4, + ). Whenb>a, wherea is the largest
zero of y,(uo, X), from (10.1) we get

X2(m2,0) x1(p1,0) = x5(p2,0) x1(m1,b) + xo(m2,a) x1(p1,)

b
= J'a dx [Vi(pq,X) = Va(uz,X)+ Mi_ IU“g]Xl(Ml X)X2(p2,X). (10.2

Note that, by the asymptotic properties of the solutions and their assumed positivity in the interval
(a,+x), we have foru,>0 and some,>0

Xo( 2, X) =Co€ 2+ 0(e7#2)  xp(mo, X)=—Couze #Z*+o0(e™#2), X—+.

(10.3
Furthermore, ify1(u1, X) is unbounded ag— + o0, then for somec;>0 we have
X1(p1, X)=c €M+ 0(e#7%),  x1(mq, X) =Cru €4+ 0(€41%), X— +oo. (10.9
If w;=0 andy(0,x) is unbounded as— +<, then for somé&,>0
x1(0,X)=Cyx+0(x), x1(0,x)=C;+0(1), X—+. (10.5

If x»(0,x) is bounded ag— + 9, then for som&,>0 we have
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x2(0,X)=Co4+0(1), x4(0,X)=0(1/K), X— +o0. (10.6

Using (10.3—(10.6 we will let b— +c0 in (10.2. When 0< u; < u,, the limit asb— +« of the
right-hand side 0f10.2 exists and is nonpositive; it is equal to zero precisely wher u, and
Vi(mq, X)=V(uo, X) 0on (@,+). If 0= u1<u,, the limit of the left-hand side afL0.2) is equal
to x5(m2, @) x1(x1, @), which is nonnegative. Hence we have a contradiction, andth{ys,, x)
must have a zero ina+ ). If 0<w,=pw, and y1(x1, X) is unbounded, then the limit on the
left-hand side 0110.2 is equal to 2,C 1+ x5(11, @) x1(&1, @), Which is strictly positive; the
right-hand side is nonpositive and so again we have a contradictior: if,6= u, and x4 (w1, X)

is bounded, then the limit of the left-hand side is equat{6u,, a) x1(x1, @), which is nonneg-
ative. If alsoV4(u1, X)#=V,(1s, X) 0n (@, +), then the right-hand side is strictly negative and
we have a contradiction. ¥/;(wq, X)=V5(u,, X) on (a,+=), then y;(uq,2)>0 due to the
linear independence of;(x1,X) and x»(u2, X), and so the left-hand side ¢10.2) is strictly
positive while its right-hand side is zero. In this case, (by there can only be one zero of
x1(m1,X) in (a,+«). If 0=w;=u, and y,(0,x) is unbounded, then because @0.6 the
left-hand side 0f(10.2 approache;C,+ x5(0,a) x1(0,a), which is again strictly positive. If
mo=m1=0 and x4(0,x) is bounded, then the limit of the left-hand side ¢f0.2) is
x5(0, @) x1(0, @), which is nonnegative. 1%,(0,x)#V,(0,x) on (a,+), then the right-hand
side of(10.2 is strictly negative, while iV,(0, x)=V,(0, x) on (a,+ ), then its right-hand side
is zero and its left-hand side is strictly positive due to the linear independengg(@fx) and
x2(0X). In both cases we arrive at a contradiction. As (i, if V.(0,x)=V,(0,x) on
(a,+), we conclude that there is exactly one zeroyef0, x) in (a,+).

(iii) Supposey,(u,, x) does have some zeros, the largest of which.isThen, under the
assumptions made i) and (ii), it follows that x;(u1, Xx) has a zero to the right af, contra-
dicting the assumptions dfii). The only situation not covered Ky) and (ii) is when w,= u1,
Vi(pe,X)=Vo(uo,X) on (a,+»), and y1(m1,X) and xo(uq,Xx) are linearly dependent in
(a,+ ), but theny,(u,,a)=0 implies y1(x1,a) =0, which is again a contradiction. ]

From Proposition 10.1 we obtain the following:

Corollary 10.2: AssumeP,Q e L*(R) and let3>0. Suppose that, (i3, x) andf (i, x)
are linearly independent. Theii (i 8, x) andf, (i 8, x) have the same number of zeros and their
zeros are separated, i.e., between two successive zefggig, x) there is a zero of, (i 8, x)
and vice versa. Moreover, to the right of the largest zerfy'¢f 8, x) there is a zero of " (i 8, x),
and to the left of the smallest zero &f (i 8, x) there is a zero of, (i 8, x).

Our next result concerns the zeros of the Jost solutiorf&.6f. Since some theorems of this
type have already been proved elsewhse®, e.g., Theorem 14.10 of Ref. 22 or Theorem XIII.8
on p. 90 of Ref. 28 we only comment on certain details that may not be obvious from those
references. Recall th&t(0,Q) denotes the number of bound stateg2b).

Proposition 10.3:(i) SupposeQ e L}(R) and assumed>0. Then the number of zeros of
f19(i B, x)2 is equal to the number of bound stateg %) with energies contained in the interval
(—oo,—IB )

(i) Suppose further tha® e L}(R). Then the number of zeros dt®(0,x) is equal to
N(0,Q).

Proof: (i) Since we only assum@ e L1(R), there may be infinitely many bound states of
(2.6) with energies accumulating at zero. All such energies are negative, and let us denote them by
— 7 with ;> y;,,>0 for j=1. It is known (Theorem 14.10 of Ref. 22hat f{°!(iy;, x) has
exactly ( —1) zeros. Hence we only need to consider the zerd$'dfi 3, x) when g is not equal
to any y;. If B>vy;, then from Proposition 10.%iii) with V,=V,=Q, ui=1v1, u=4,
X1, X) =9 y1, ), and xo(u2, x) =12 8, x), it follows that f{°)(i 8, x) has no zeros. If
Be(vj+1,7)), then, by Proposition 10.4) and (ii) with u,=8 and u,=;, we observe that
f,[o](i,B, X) has at leasf zeros. On the other hand, using Proposition 10.1, we can conclude that
f,[o](i,B, x) cannot have more thajnzeros because the number of its zeros is nondecreasifg as
decreases ané{®/(iy;11,x) has exactlyj zeros. Thusf{°)(i3,x) has exactlyj zeros whens
€(7Yj+1,7;)- This provedi) whenN(0,Q) =+ because the bound states(®f6) can only occur
whenk is on the positive imaginary axis. N(0,Q) is finite and is denoted hy/ ", then we must
still consider the case whesie (0,y ,). Then using Lemma 1 on p. 91 of Ref. 23 we conclude
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that f{o](iﬂ,x) has exactly./” zeros because if it had more thaf” zeros one could find a

subspace of dimension at leagt+ 1 on which the expectation value of-@?/dx?+Q— BP) is
less than or equal te- 82, and this would imply the existence of at least + 1) eigenvalues less
than or equal to- 82.

(i) In this case the conditio e L}(R) guarantees tha¥i(0,Q) is finite. It only remains to
consider the cas@=0. Note thatf,[O](O,x) cannot have more than zeros; this is because
f9(i B, x) has exactly/ " zeros wherg is sufficiently small and by2.5) we see that a8—0 we
have f[%)(i 8, x)— f[°)(0, x) uniformly on compacix-intervals. On the other hand, i10.1) by
setting u1=0, uy=p, Vi(p1,X)=Q(X), Va(uz, X)=Q(X)~BP(x), Vi(u1,x)=Q(x), and
x2(12,x)=f1%(B, x), and using Proposition 10.1, we see tfigf(0, x) has at least/" zeros.
Hencef[%(0,x) must have exactly/ " zeros. [}

If Qe L}(R), thenN(0,Q) is finite and as in Sec. IX we lét=ix; for j=1,...,/"denote the
bound states of2.6). From Theorems 9.7 and 9.9, where: LY(R), Qe L}(R), andP(x)<0, we
already know that the bound states(@f1) occur atk=i g; satisfyingBj<«; for j=1,..../". In
the next theorem, we extend Proposition 10.81td) and analyze the number of zeros of the Jost
solutions of(1.1) whenk is on the positive imaginary axis.

Theorem 10.4:Assume thaP e LY(R), Qe L%(R), andP(x)=<0. Then, for eactB=0, the
functionsf;" (i 8, x) andf, (i 8, x) have the same number of zeros, and this number is equal to the
number of bound states ¢1.1) with energies contained in the intervat ¢, — 8?).

Proof: From Proposition 10.4) and(ii), we see thaf," (i 8, x) andf, (i 8, x) have the same
number of zeros. SincP(x)<0, from the proof of Theorem 9.7 it follows that, for any fixed
B>0, the number of eigenvalues of the operaterd/dx?+ Q— BP) below — B2 is equal to the
number ofE;(3)-values that lie below- B2. Note that if3 e [Bj:Bj+1) for j=1,..../7=1, then
the (/7—]) valuesk ,{B),E ,—1(B),-..-,Ej+1(B) lie strictly below— B2%; if Be[B ,-,+) then
there are no eigenvalues belowg?, and if 8e[0,8,) then exactly./" eigenvalues lie below
— B2. Using Proposition 10.3 when the potent@{x) in (2.6) is replaced byQ(x) — BP(x), we
conclude thatf,"(i8,x) has no zeros forBe[B ,,+=), ./~ zeros for B[0,8,), and
(/=) zeros forge[B;,Bj+1) for j=1,..,. /=1 |

If we weaken the conditioR(x)<0 in Theorem 10.4, the number of bound states may not be
easily related to the number of zeros of the Jost solutions, as we will see in Example 11.2. From
Proposition 10.1 and Theorem 10.4 we have the following:

Corollary 10.5: Assume thaP,Q e L!(R) and thatP(x)<0. The zeros of (i 8;, x) sepa-
rate the zeros ofﬁ(i,BjH, x), i.e., between two consecutive zerosféf(i,Bj , X) there is exactly
one zero offﬁ(iﬁjﬂ, X), wherek=ig; for j=1,...../" correspond to the bound states(af1).
Similarly, the zeros ofr*(iﬂj , X) separate the zeros cﬁf(i,BHl, X).

When we no longer hav@(x) =<0, then there may be bound states(dfl) with complex
energies an®l(P,Q) may be larger thah(0,Q). We refer the reader to Examples 11.2 and 11.4.
In the next theorem, wheR e L}(R) andQ e L%(R), we analyze the bound states(@fl) when
k is on the positive imaginary axis, establish the connection between Theorem 8.4 and the zeros of
f (B, x), and also consider multiple zeros offt/(k) on the positive imaginary axis.

Theorem 10.6:SupposeP e LY(R) andQe L}(R). Then:

(i) If (2.6) has./" bound states with/ =1, then(1.1) has at least/” bound states with real
(negative energies.

(i) L/T*(iB) has a zero of ordem at some positive3, if and only if the functionEqy(SB)

+ 82 has a zero of ordem at B,, whereEy(B) denotes the unique eigenvalue branch of the
operator (d?/dx?+Q— BP) satisfying Eq(8)— — 85 as B— By. If m=1, then the graph of
Eo(B) and the graph of the parabdia= — 82 intersect with different slopes #,. If m=2 and

m is even, then the graphs touch@y but do not cross each other.nf=3 andm is odd, then the
graphs cross smoothly such that at the point of intersection they have the same slope.

(i) The lowest eigenvalue branéh,- (8) satisfiesE”,- (8) <0 for >0 unlessP(x)=0, in
which caseE ,{B) is a constant. Hence the graph of the lowest eigenvalue branch is concave
down if P(x)#0.

(iv) The number of zeros df' (i 8, x) behaves in the following manner gss increased from
Bo— € to Bp+ € when € is sufficiently small: Ifm is even, then the number of zeros is either
constant throughout the intervgB¢— €, Bq+ €) or it is constant in Bo— €,80)U(By,Bo+ €) but
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one less aB,. If mis odd, then the number of zeros either increases or decreases by gne as
crossesBy. The number of zeros of;" (i3, x) can only change aB-values corresponding to
bound states of1.1).

Proof: (i) Since we are only interested in the bound states correspondirig=t@ for
B>0, we first derive a lower bound fdE ,-(8), which will show thatE ,- (8)=0(8%) as
B— +oo. Let us indicate the Fourier transform by a caret:

~ 1 o ) 1 © A
l//(Q)=E f_mdx €9y(x), d/(X):E f_wdq e 'y(q).

Then, letting||-||, denote the norm oh?(R), for a>0 we get(cf. Theorem 1X.28 of Ref. 24

| (%) <= f dq |;,,(q)|gL“°° dq (g2+a)|¢(q)|?

1/2 1

N (l9'15+a% 43
(10.7

where we have used the Schwarz inequalityl,=||#ll,, [*.da/(a?+q?)=n/a, and ¢’
=—igy. Next we usg10.7) to estimate the quadratic fornd®, ) and(P, ). From(10.7)
we obtain

s 1 s
de [QU)[¥(x)]*< 55 <||w'||§+a2||w||§>( fmdxlcxx)l). (108

If P(x)=0, then(1.1) and (2.6) become identical, and in this trivial case both equations have
exactly./" bound states. Thus there is no loss of generality in assu{x§=0. In order to
estimate the integral”_.dx |P(x)||#(x)|?, we split it into two parts: one over the region
{x:|P(x)|>M} and the other over the regidn:|P(x)|<M}, where the constari1=0 is arbi-
trary for the moment but will be fixed later. Then, for aby 0, (10.7) implies

o 1
[ exlpodilucor=5 dwizeslutd] |

dx [P(x)] | +M]ly3. (10.9
{|P(x)|>M}

Combining(10.8 and(10.9 we get

(=9 +Qy—BPy,)=d1| ¢ |5 3a] 13,

where

1 ® ,8]
Ji=1-— dx X)|— = dx |P(x)],
=15 a5 | dxleoo

a (= Bb
Jzz—f dx |Q(X)|+ —= dx |P(x)|+ BM.
2 )= 2 J{peol>my

We now set

a= [ axiQml, b=pf  dx|Pwo]

and assume that is a normalized eigenfunction corresponding to the eigenvalug(8). Then
the left-hand side 0€10.9 is equal toE ,- (8) and hence

1 0 2 2 2
e o= [ axlami| =5 [ [ axleool] ~am.  aoao

Downloaded 23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



1982 J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee

Since by choosin$/l large enough we can make the second term on the right-hand stl@. )
as small as we please, it follows that,-(8)=0(8%) as 8— +%=. ThusE ,-(8)>— B2 for B
sufficiently large, whileE ,-(0)= — 2 <0. Hence by the intermediate value theorem, the equa-
tion E_ ,-(B) = — B2 has at least one solution. A similar argument shows that each of the remaining
eigenvalue branches;(g) for j=1,...,/ =1 must intersect the parabdia= — B2 at least once.
Since each intersection increases the number of negative-energy bound stat#s thfe proof of
(i) is complete Note that if an eigenvalue brangh(g) touches or intersects the parabola
E= — 2 at other points, such additional points are also responsible for additional negative-energy
bound states of1.1). Moreover, there may be other eigenvalue brandbgs) starting at (3,0)
for someB>0 and intersecting or touching the parabBla — 82 at one or more points; again,
each of such points also increases the number of negative-energy bound statés of

(i) If P(x)=0, each eigenvalue brané&hy(B) becomes the horizontal ling,(B) = —BS for
B=0, and henc&{(B) =0 for 3>0. Thus in the rest of the analysis we can assumeRf&)+0.
Associated with the eigenvalug,(B) there exist® a real-valued, analytic eigenvectgt B, x).
Near 8= B, we have the convergent expansions

o

Eo(B)= 20 an(B—Bo)", W(B, x>=n§0 Pa(X)(B—Bo)", (10.13

with ¢, e L2(R) for n=0. Substituting(10.11 in (1.1) we get the following set of equatiorisee
pp. 333 and 334 of Ref. 26or n=0:

Pr(X) = Bathn(X) + @y 1(X) + Azt 2(X) =[ — BoP(X) + Q(X) 1thn(X) — P(X) hn(X)
—JZB ajin_;(x), (10.12

where it is assumed that_,= ¢_,(x)=0 if n=1. From(9.17) and(9.18 we see that

ay=Eo(Bo), a=-— f dx P(x)yo(X)2. (10.13

1/’0”2

We may choos@yg(x)=f," (i 8 ,X). It suffices to prove that T/* (i 8) has a zero of order at least
m at 3, if and only if Eq(8) + 82 has a zero of order at least at 3,. From Proposition 8.1 we
know that this is true whem=1. If B, is a zero ofEq(B) + 82 of orderm for somem=2, then
the coefficientsa,, in (10.3 are determined fon=0,1,....m—1 by expandingE,(B) + 8 about
Bo. Thus form=2 we getaoz—,BS, a;=—28y; for m=3 we getag=— B35, a,=—28y, a,
=—1; form=4 we getag= — ,BO, a,=—2Bq, a,=—1, andaz=---=a,_1=0. Then, compar-
ing (10.12 and(8.2) and using the fact that the functlogén(l,Bo,x) are uniquely determined as
solutions of(8.2) by the requirement thzgI n(iBo.-) e LZ(R) we obtain

Pn(X)=i"g,"(iBo, %), Nn=0,..,m—1. (10.19

Thus, by Theorem 8.4, we see thaT 1(i3) has a zero of order at least at 8,. Conversely,
suppose " (iB) has a zero of order at least at 8,. From(10.12 one can derivésee p. 334
of Ref. 26 the following recursion formula for the coefficierds:

n—1

1
8,=— f dx a//o(x)(P(an 10+ 2 ayn-(x) |, n=2. (1019
loll2

Now assumen=2. Since the functlon$g| (iBo,-)}M=¢ form a Jordan chain of lengtim, using
(8.13 with n=1 and(10.13 we geta,;= —23,. HenceEy(B) + 82 has a zero of order at least 2
at By. If m=3, then using8.13 with n=2, (10.14, and(10.19 we obtaina,= —1 and this, in
turn, implies thaEy(B) + B2 has a zero of order at least 38§. If m=4, then(8.13 and(10.15
give a;=0 and thena;=0 for all j=3,...m—1. As a resultEq(B) + B2 has a zero of order at

Downloaded 23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee 1983

leastm at B,. If mis even, therEy(3) touches the parabol= — 82 at 3, but stays either above
or below the parabola; ifn is odd, thenEy(B3) intersects the parabola by crossing from one side
to the other.

(i) For the lowest eigenvalue, we need to show thatin (10.1]) is negative for any
Bo>0. We have(see p. 334 of Ref. 26

x dt t
¢1(X)=—¢0(X)j Wf ds ¢o(S)[P(8) ho(S) +ar4o(S) ], (10.16
Xo -

where the constant, is arbitrary; however, since changing amounts to adding a constant
multiple of ¢(x) to ¢1(x), with the help of(10.6) one can show that the value af, given in
(10.15 is independent of,. Using(10.16 in (10.15 with n=2 and the positivity ofyy(x), after
performing an integration by parts, we get

3 1 e dx
loll5 J - tho(x)?

Thusa,<O0 in (10.1) for any 8,>0, and hence we hav”, - (8)<0 for any 8>0.

(iv) Let us consider the number of zeros §f(i8, x) in relation to the behavior of the
eigenvalue branckq(B) nearB,. From Proposition 10.8), whenQ(x) in (2.6) is replaced by
Q(x) — BP(x), we know that the number of zeros ff (i 3, x) is equal to the number of eigen-
value branches lying below 2. Let | g, denote the interval§,— €,8,+ €) and IetJﬁo denote
(Bo—€,80)U(By, B+ €) for sufficiently smalle>0, and let us consider the number of eigen-
value branches below 82 when Belg, If m is even, thenEy(B) touches the parabol&
=— B2 at B, but stays either above or below that parabola; in the former Eg&e) > — 32 for
BeJg, and hence the number of zerosfgf(i 8, x) remains unchanged fg@ e | g, in the latter

caseEq(B) < — B2 for BEJBO and hence the number of zerosf@f(i 8, x) for BEJBO is exactly

one more than the number of zerosfgf(i By, X). If mis odd, therEy(B) intersects the parabola
E=—82 by crossing from one side to the other of that parabola;E§{B8)<— 8% on
(Bo—€,Bo), then the number of zeros 6f (i 8, x) decreases by one ghincreases througy;
if Eq(B)>— B2 on (Bo— €,Bo), then the number of zeros increases by ong axreases through
Bo. In order to prove that the number of zerosf@f(i 8, x) can only change if3 corresponds to
a bound state of1.1) with real (negativeé energy, we can proceed as follows.df and 8, with
B1< B, correspond to two consecutive real bound-state energig€d.df, then no eigenvalue
branch can intersect the parabdia= — 82 for Be(B;1,8,). Hence the number of eigenvalue
branches that lie below B2 is constant foi8 e (31,8,), or equivalently, the number of zeros of
f,"(iB, x) is constant for8 e (B81,85). [ ]

We remark that statemef(iii ) is a familiar result that also follows from the min-max prin-
ciple. An example illustrating Theorem 10.6 is given in the next sediorample 11.8

Proposition 10.7:AssumeP,QeL}(R) and letko=a+iB for somea#0 and 8>0. If
P(x)=<2p, thenf;"(ko, x) andf, (ko, X) cannot vanish for any e R.

Proof: Using (4.7) in (4.16) we obtain

a2:

X 2
U dt go(t)’[P(t)+ay]| <O.

d _
&[ff(—ko,x);ff(ko, x)]1=2ia[P(x)—2B]|f (Ko, x)|%. (10.17

Suppose | (kg, X) has at least one zero and tébe the right-most zero df" (Ko, X). Note that,
as seen from4.7), the zeros off,"(—ko, x) and f," (ko, X) coincide. Integrating10.17 over
(d,+<0) and using(8.1) and(8.2), we obtain

2ia J:dx[P(x)—zﬁ]lfr(ko,x)lz=0-

This is impossible ifa #0 andP(x)=<2g; note thatP(x) =28 on a semi-infinite interval would
contradictP e LY(R). Hencef;"(ko, X) cannot vanish for anxe R. The proof forf (ko, X) is
analogous. |
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FIG. 1. Eigenvalue curveB,(8), E,(8), E3(B) intersecting the parabol= — 82.

Xl. EXAMPLES

In this section we illustrate our results on the number and location of the zerog'gfk)/and
on the zeros of the Jost solutions with some explicit examples. Example 11.1 shows the typical
behavior of some eigenvalues branches as it was discussed in Secs. IX and X. Example 11.2
exhibits the possibility of real zeros of TLf (k) and of complex zeros off the imaginary axis in
C*. In Example 11.3 we consider the zeros on the imaginary axis and the corresponding eigen-
value branches. We also demonstrate the possibility of a double zero on the positive imaginary
axis. While Examples 11.1-11.3 involve simple step potentials, Example 11.4 concerns potentials
that decay exponentially.

Example 11.1For real parametera. andb.. , let

b+, XE(O,].), a+, XE(O,].),
P(x)=9 b_, xe(-1,0), Q(x)=4{ a_, xe(—-1,0), (11.2
0, elsewhere, 0, elsewhere.

Then by straightforward calculations one obtains
672ik

T+—(k)=coss+ coss_+F, sins, coss_+F_ coss, sins_—G sins, sins_,

(11.2

where

k2 +s2 s? +s2

+ =\ 2—j + A+ + = A~ = .
S:=\k'~ikb.~a., F. 2iks. ' 2s,S_

Fora.=—15,b,=2, andb_=—2 we get three purely imaginary bound statekat1.568,
k=2.711, and k=4.376. Here and below we use an overline on the last digit to indicate
round-off. These are all the bound states because a plot of 'gky for ke R* reveals that
argT"(0+)=5n/2, so that by(9.22 we haveN(P,Q)=3; note that we are in the generic case.
Figure 1 shows the eigenvalue curves associated with the pot¥ffiialx) =Q(x) — BP(x) [cf.
(9.16)]. The analysis shows that the branctg$s) andE;(8) are not concave, onlig;(B) is
concave down. This, in particular, illustrates paiit) of Theorem 10.6.

Example 11.21n this example we demonstrate the existence of nonreal zerosTofKY.
Puttinga_=0,a,=a, b_=0, andb,.=b in (11.1) and(11.2, we get

1 k>+s? 1
T*—(k)_e COSS+TI<SSIHS’ (11.3
wheres= \k?—ibk—a. By Theorem 9.3, ia=0 andb>2, then we must have a bound state at
k=i B for some positive3. Indeed, ifa=0 andb=21/10, we obtain a bound statelat 0.15 and
this is the only bound state. When=—9 andb=5, we find bound states &;=5.619, k,
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(e) (a)
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FIG. 2. () £/ (ky, %), 0 £ (k3 )], © | (k3 )], and(@) [f; (ki , %)].

=+6.28+0.495, ky = =0.838+0.81, andk; = =9.898+0.2192. As in Example 11.1 it fol-
lows that these are all the bound states. In Fig. 2 we Rk, x), |f,"(k; ,X)|, |f;" (k3 , X)],

and |f,"(k; ,x)| on the intervalxe (—2,2). Let us remark that the functiorfg (k,,x) and
f (k5 ,x) are even with respect to=1/2, and the function$;" (k3 ,x) andf, (k; ,x) are odd
with respect tox=1/2. Whena=—9.2738and b=3.9708 we obtain a zero of T/* (k) at k

=1. In the special case wher=0 we have

1 b L*(0) R*(0)

T7(0) =1-3 TT(0) T7(0)

b
=5
Hence 177 (0)=0 if and only if b=2. Note that the bound states may occur even WQ¢x)

=0. For example, whea=1 andb= 10, we obtain over 200 bound states, four of which corre-
spond tok values on the positive imaginary axis wit=ig;, where

B1=0.13 B,=250 B;=5.63 p,=9.16

When a=0 and b=100, we obtain 31 bound states on the positive imaginary axis With
=ipB;, where

B,=0.10 B,=041 B5=0.93 B,=167 Bs=2.64 Be=3.85 pB,=5.33
Be=7.09 Bo=9.19 By=11.69 B1,=14.63 B,=18.2Q Br=22.61
B1,=28.43 B1s=37.63 B1,=60.41 B,,=69.69 B1s=75.6Q0 By=80.11
Boo=83.77 [,;=86.83 B,,=89.42 Br=91.63 B,,=9352 Br=95.12

Bo=96.46 Br;=97.57 Pog=98.46 Pro=99.14 B3,=99.62 and Bz=99.91

and there are also many more bound states correspondikgatues off the imaginary axis in
C™. In this case, one finds th&t (i 8, x) has no zeros fop=0, no zeros foB e (B3;,+ =), one
zero for g€ (0,81), and one zero foB e (B39,B831), | zeros forBe (Bj-1,B;) andj zeros for
Be(Bs1-j,B3o—j) With j=2,3,...,15, and 16 zeros f@te (B16,817)-

Example 11.31{a) Let a=0 andb=10 in Example 11.2, and hengx)=0 andP(x)=0.
Note thatN(0,Q)=0. From(9.16 we obtain[cf. (11.3)]

2A\—E cosA=(A%+E)sinA, (11.4
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FIG. 3. The parabol& = — 82 intersecting the eigenvalue curvEsg(8) andE,(B).

whereE=E(R) is the energy in9.16 andA = \/Bb—a+ E. Using the half-angle formula for the
tangent function, we can writel1.4) as a pair of equations determining the eigenvalue curves:
=——. (11.5

ol - 5E. wfd)--

A 2

Recall from the proof of Theorem 9.7 that the bound statgd dj with real energies correspond
to the B-values where the eigenvalue curves intersect the pardébela 8°. Whena=0 andb
=10, from (11.5 we obtain two eigenvalue branches intersecting the parabela- 82. Let
E,(B) denote the eigenvalue branch responsible for the lowest real bound-state energy. We see
that E,(8) emerges from0,0) and intersects the parabdi= — 82 at 83=9.273 The second
eigenvalue branchg,(B), emerges from zero gg=m2/10 and then intersects the parab&8a
=— B2 at B,=2.114and at8,=5.963 These eigenvalue branches and the paraBela- 82 are
plotted in Fig. 3. The valueg,, B,, and B; correspond to simple zeros of TI7(i B). If
B= B3, thenf," (i 8, x) has no zeros. IBe[ 3,,85), thenf " (i 8, x) has one zero becausg(3)
is the only eigenvalue below B2. If Be(B,,8,), thenf, (i 8,x) has two zeros because both
E,(B) andE,(B) lie below — g2, If Be(0,8,] thenf; (iB, x) has one zero, and #=0 then
f,+(0,x) has no zeros becaug2.6) with Q(x)=0 has no bound states.

(b) Whena=0, one can choose the paramdtesuch that the brancBE,(8) just touches the
parabolaE = — 82 at 8,. Then the slope of the eigenvalue curveBatmust be equal to-23;,

and this happens when
r( \/b2—4) Vb+2
ta =- ,
4 b—2

A

from which we getb=9.2066 leading to3,=3.603 and 3; corresponds to a double zero of
UT*(iB). The eigenvalue brancB,(8) intersects the parabola=— 2 at 3,; we haveg,
=8.433 which is responsible for the lowest real bound-state energy. In this ta6g8, x) has
no zeros for3=0, one zero forB e (0,8,), and no zeros foB e[ B,,+=). We show the two
eigenvalue branches and the parab®ta— 32 in Fig. 4.

(c) Whenb=10 we can finda such that the lowest real bound-state energy corresponds to a
double zero of W (i B). Proceeding as ifb), we get

A 1081(B1—4)
B1—3

where 8, is obtained by solving

M(M) N
al

2B=3 | B3 (119
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FIG. 4. The parabol& = — 8? touchingE,(8) and intersectinge,(3).

From (11.6 we getB,=4.724and hencea=19.852 In this casef; (i3, x) has no zeros for any
B=0. The eigenvalue curvé,(B) and the parabol&= — 82 are plotted in Fig. 5, and it is seen
that there are no other real bound-state energies besigs

Example 11.41 et

2i(1+b)e ce 2

+ —1—
m(KX) =1 e T e 7

X=0, 11.7

2i(1+b)e ce*<

kX =1
7 (kX =1 o e

x=0, (11.8

wherec, € are positive parameters abds a real parameter. Usin(d.1), (1.2), (3.3, (3.4), (11.7),
and(11.8, we obtain

4bece™2¢X
POO= 15 ce 2o

_ 4e%ce 2 —3b—2+b%ce 2]
Q(X)_ (1+Ce—25|x|)2

HenceeP=(1+c)?® and using(6.3) we get

k(k+ie)2eP

T 0= kO k)"

where we have defined

-20

-40

-60

-80

-100

FIG. 5. The parabol&= — 82 touching the eigenvalue cuni,(S).
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€

ko=1 1rc [-1+c+2bc],

ie
= [(— 2

K. 5170 [(—1+c+4bc)+\1+c?+ 14c+16bc]. (11.9

Let us now analyze the poles ®f (k). First note thak simply acts as a scaling parameter for the

location of the poles; thus the relevant parametersbaend c. We can divide the half-plane

{(c,b):c>0} into four separate regions by using the three nonintersecting cbreds, (c), b

=TIg(c), andb=TI"_(c), where

1-c c—3 (c—3)? 1
FO(C):?! Fi(c):_ 4c * 1&:2 +E

On these three curves the exceptional case occurs; not& tkad onT', , k, =0 onI"_, and
ko=0 onI'y. The number of bound states changes by one as we cross each of these three curves;
otherwise, we are in the generic case. Note that:

(i) If b>T",(c), thenkg, k., andk_ all lie on the positive imaginary axis, and hence we
have three bound states.

(i) If To(c)<b=<I_,(c), thenk, andk, lie on the positive imaginary axis, blt_ ¢ C™*;
hence we have two bound states.

(i) If T'_(c)<b=TIy(c), then there is exactly one bound state becakiselies on the
positive imaginary axis but, andk_ are not inC™.

(iv) There are no bound states whesI" _(c) because none &, k, , andk_ liein C*. In
this casek, is always located on the imaginary axis; andk_ lie on the imaginary axis when
b=—(c+14+1/c)/16 and they lie inC~ symmetrically located with respect to the imaginary
axis.

This example can also be specialized to show the occurrence of a double zefo" &)1/
Indeed, choos®= —(c+ 14+ 1/c)/16 andce (—1,—5+25). Then, from(11.9 we see that
k,=k_=—ie(c®+10c+5)/[8(1+c)], and henceT" (k) has a double pole on the positive
imaginary axis inC" for any ce (—1,—5+245). Note also that wheib=(1—c)/(4c) and
ce(—1,-5+25), althoughk, is located on the negative imaginary axs, andk_ are sym-
metrically located on the real axis; thus, in this caSgk) has poles on the real axis. When
=—(5+/5)/10 andc=—5+2./5, bothk, andk_ vanish, and hence we get a simple pole for
T* (k) atk=0; this illustrates the exceptional case when the denominat.8n vanishes.

APPENDIX: SMALL- kK ESTIMATES

In this Appendix, proceeding as in Refs. 11 and 12, we obtain various &nestimates that
are needed in the proof of Theorem 5.2.
In the exceptional case, left(k, X) be the solution of1.1) satisfying the initial conditions

W(k,0=1,(0,0, ¥ (k0)=f/(0,0, keR. (A1)

Note thatE(O, x)=1,(0,x), and henceZ(O, X) is bounded in such a way thEt(O,Jr ©)=1 and
#(0,— )=y, wherey is the constant defined i{2.9). We have

sinkx 1 [(x . . ~
[ ay sinkoeylikPy) + QU Tk
0

(A2)

Wk, x)=1,(0,00coskx+f/(0,0)

Let ¢1(k, x) denote the solution ofl.1) with P(x)=0 and satisfyingAl). We have

sinkx 1 [x ]
Y1(k, x)=1f,(0,0)coskx+f (0,0 T+ K fo dy sink(x—y)Q(y)#1(k,y). (A3)
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Note that’zZ(O, X)=1(0, X).
Proposition A.1:AssumeQ e L}(R). Forx,ke R, we have

|kx]

1+ |kx|

2

[1(k, %) = ¢2(0,x)|<C o gk x)[<C(1+K]). (A4)

Proof: Note thaty4(0,x)=f,(0, x) and hence it is uniformly bounded fare R. Furthermore,

U1(0,)=1,(0,0 + X/ (0,0 + f:dy (X=Y)Q(y) g1(0y). (A5)

Subtracting(A5) from (A3) and iterating the resulting integral equation as in the proof of Propo-
sition A.1 of Ref. 12(usingH (x)=H_, =1 therg we obtain the first inequality ifA4). Using that
inequality and the boundednessf(0, x), we obtain the second inequality {A4). ]

Let us choose a second linearly independent solutiofld) with P(x)=0 such that the
Wronskian[ ¢ (k, X); #5(k, X)] is equal to 1. For example, we can choaggk, x) so that it
satisfies the initial conditiongr,(k,0)=0 and ¢5(k,0)=1/f;(0,0); note that there is no loss of
generality in assumingd,(0,0)# 0, since the casé (0,0)=0 can be handled by a shift of the
origin. We have

B sinkx 1 (x )
Po(K, X)—m+; Jody sin k(x—=y)Q(y) #a(k,y). (AB)

Proposition A.2:AssumeQ e L}(R). Then, forx,ke R we have

2

[kx
. (A7)

1+ kx|

Clx|

ok 01 = T [tk X) = 4(0x)|=Clx]

Proof: Iterating (A6) as in the proof of Proposition A.1 of Ref. 12, we obtain the first
inequality in(A7). Note that from(A6) we have

X X
$A0X0= o5+ fody (X=Y)Q(Y) 45(0y). (A8)

Subtracting(A8) from (A6) and iterating the resulting integral equation, we obtain the second
inequality in(A7). |
Proposition A.3:AssumeP,Q e Li(R). Then, forxe R and ask—0 in R, we have

Tk X)— tra(k ) = — ik (0X) foxdz 12(0, 2)P(2)#1(0, 2)

|kx]

%X Tk

2
) . (A9)

+ik,(0, X) foxdz P(z),(0,2)%>+ 0

Proof: Recall thaty,(k, x) and i,(k, x) are two linearly independent solutions @.1) when
P(x)=0. Using variation of parameters @¢h.1), we obtain(assuming<=0)

Bk, X)— gk, X)= — ik (K, X) f:dz VoK, 2)P(D)P(K,2)

+ik (K, X) f:dz #1(K,2)P(2) (K, 2). (A10)

Let us write(A10) as

WK, X)— Py (K, X) = Ag+ Agt+ Ag+ Ay + Ag+Ag+ A+ B, + By, (A11)
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where we have defined

B,=—ikya(k) | 42 yalk 2P (k.2 Yk D),
B~ kyalk,x) | 42 ya(k DP@IT(K D~ pa(k.2)],
A== ikis(0) | "4z (0, 2P(2144(0,2),

Ao= =KL (k. 0= 130001 | 02 0otk 2P @) s(k.2),
Ao=—ikin(00) | "4z [us(k.2)= (0. 21P2) s k.2),
A= —iky1(0,x) f:dz ¥2(0, 2)P(2)[ #1(k,2) = 41(0, 2) ],
As=iki(0) [ "z P2)U(0,27%,

Ae=iKL Utk )~ (0001 [ 02 R2)a(k.22

A7=ik (0, %) f:dz [#1(k,2) = #1(0, 2) [[h1(k,2) + 41(0, 2) |P(2).

Using the estimates iA4) and (A7), we obtain

A,l<Clk|(1+ ]|k i zfxd P A12
< _
|Ao|<Clk|(1+]k]) 1+1kd] Jo z 1P(2)], (A12)
Asl=Clk|(1+]k i 2fxd P A13
< L
kx| |2 [
Ad=CIK| 117 ], 02 2P (A14)
Ag|<Clkx|(1+]k|)? i fod P Al5
=
kx| |2 [x
Ad=CIk(1+1K)| 17| | a2 IPC@). (A16)

For x<<0 analogous estimates hold. Iterating the integral equatiogifkrx) — ¢ (k, X) given in
(A11) and using(A12)—(A16), we obtain(A9). [ |

In order to estimate the smailasymptotics off * (k), we will use(4.2). Note that as if{A24)
of Ref. 12 we have
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f1(0,0[f," (k, x);f, (K, x)]=fr+(k,0)[ —ikf,(0,00+f/ (0,0 + fwdz ékz[ikP(z)+Q(z)]E(k,z)
0
0 )
—fﬁ(k,O)[ikf|(0,0)+f,’(0,0)—J dz e *ikP(z)

+Q(2)19(k,2)

) (A17)

Proposition A.4:AssumeP,Q e Li(R). Then, ak—0 we have

dez dikP(2)+Q(2)]9(k,2) = —f,’(0,0)+ikf|(0,0)—ik+ikJocdz P(2)f,(0,2)2+0o(|k|),
0 0
(A18)

ji) dz ékz[ikP(z)+Q(z)]E(k,z)=f|'(0,0)—iky+ikf|(0,0)

+(ik/y)Jj) dz P(2)f(0,2)2+0(|k|]),  (A19)

wherey is the constant defined i{2.9).
Proof: Let us write

fmdz & ikP(2)+ Q(2)](K,2) = J1+ Jp+ Ja+ I+ Js+ I, (A20)
0

where

3= 4z Q20,2 3= [ 4z Qe -1TR0.2),
0 0
J3=ikfxdz d2P(2) (0, 2),
0
Ju= f:dz é°Q(2)[y1(k,2)— (0, 2)],
J5=ikfmdz ékzp(2)[ (k,z)— (0, 2)],
0

3o | a2 dQ Gk - (k).
As in (A25) and (A26) of Ref. 12 we havel,=—f/(0,0) and
J,=ik[f,(0,0—1]+o(|K|), k—0.
As k—0, using(A4) we obtainJ,=o(|k|) and

J3=ikf:dz P(z) 40, 2)+o(|K|),

and using(A9) we haveJs=o(|k|) and

Je=1ik fw dz Q(2)
0

— 1(0, 2) foz dt ¥5(0,)P(1) Y1(0, 1) + 1»(0,2) f: dt P(tm(o,t)ﬂ

+o([k]). (A21)
Notice that[¢4(k, X);¥,(k,x)]=1 and Q(z)ws(o,z)i:,z/;(o,z) for s=1,2. Therefore, using

50,4+ %)=1, 41(0,2)=0(z" 1) asz— +=, ,(0,2)= (0, z), and integration by parts twice in
(A21), we obtain
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Jo=—ik J: dz P(2) (0, 2)+ik J: dz P(2) (0, 2)%+o(|k|), k—0.

Thus, from(A20) we obtain(A18). Similarly, using;(0,—«)=0 and ¢,(0,—«)=17, we get
(A19).
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