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Wave scattering is analyzed in a one-dimensional nonconservative medium gov-
erned by the generalized Schro¨dinger equation d2c/dx21k2c5@ ikP(x)
1Q(x)#c, where P(x) and Q(x) are real, integrable potentials with finite first
moments. Various properties of the scattering solutions are obtained. The corre-
sponding scattering matrix is analyzed, and its small-k and large-k asymptotics are
established. The bound states, which correspond to the poles of the transmission
coefficient in the upper-half complex plane, are studied in detail. When the medium
is not purely absorptive, i.e., unlessP(x)<0, it is shown that there may be bound
states at complex energies, degenerate bound states, and singularities of the trans-
mission coefficient imbedded in the continuous spectrum. Some explicit examples
are provided illustrating the theory. ©1998 American Institute of Physics.
@S0022-2488~98!01503-5#

I. INTRODUCTION

Wave propagation in a one-dimensional nonconservative medium is described, in th
quency domain, by the generalized Schro¨dinger equation

c19~k,x!1k2c1~k,x!5@ ikP~x!1Q~x!#c1~k,x!, xPR, ~1.1!

whereR is the real line, the prime denotes the derivative with respect to the spatial coordinx,
k is the wave number~also known as the momentum!, k2 is the energy,P(x) describes the
combined effect of energy absorption and energy generation, andQ(x) denotes the restoring forc
density. In the time domain,~1.1! corresponds to a wave equation of the form

]2u

]x22
]2u

]t2 2P~x!
]u

]t
5Q~x!u, t,xPR,

where the wave speed is equal to 1. WhenP(x)<0, there is net absorption; however, unle
otherwise stated we will not put any restriction on the sign ofP(x). In the sequel a significant role
will be played by the associated equation

c29~k,x!1k2c2~k,x!5@2 ikP~x!1Q~x!#c2~k,x!, xPR, ~1.2!

where the sign ofP(x) in ~1.1! has been changed.
Let Lq

p(I ) denote the measurable functionsf (x) such that* Idx (11uxu)qu f (x)up,1`, and
let Lp(I )5L0

p(I ). Throughout the paper we will usei f i1 and i f i1,1 to denote theL1(R) and
L1

1(R) norms,*2`
` dx u f (x)u and*2`

` dx @11uxu#u f (x)u, respectively. All the results given in thi
paper are valid if we assume thatP andQ are real valued and belong toL1

1(R). The existence of
the first moment is needed for certain results that involve the limitk→0. Some results, however
will be proved under the weaker conditionsP,QPL1(R).
19570022-2488/98/39(4)/1957/36/$15.00 © 1998 American Institute of Physics
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The scattering solutions of~1.1! and ~1.2! are those behaving likeeikx or e2 ikx asx→6`,
and such solutions occur whenk2.0. Among the scattering solutions are the Jost solution fr
the left f l

6(k,x) and the Jost solution from the rightf r
6(k,x) satisfying the boundary conditions

f l
6~k,x!5H eikx1o~1!, x→1`,

1

T6~k!
eikx1

L6~k!

T6~k!
e2 ikx1o~1!, x→2`,

~1.3!

f r
6~k,x!5H 1

T6~k!
e2 ikx1

R6~k!

T6~k!
eikx1o~1!, x→1`,

e2 ikx1o~1!, x→2`,

~1.4!

whereT6(k) are the transmission coefficients, andR6(k) and L6(k) are the reflection coeffi-
cients from the right and from the left, respectively. The scattering matricesS1(k) associated with
~1.1! andS2(k) with ~1.2! are given by

S6~k!5FT6~k!

L6~k!

R6~k!

T6~k! G .
WhenP(x)<0, it will be seen thatS1(k) exists for allkPR; however, whenP(x)>0 or when
P(x) has mixed sign, we will see thatS1(k) may not exist atk50 or at some other real values o
k.

In this paper we analyze the direct scattering problem in preparation of a more detailed
of various inverse scattering problems for~1.1!. One of these inverse problems consists of
recovery ofP(x) and Q(x) from an appropriate set of scattering data. In the radial case, w
there are no bound states, Jaulent and Jean1 presented an inversion method with realQ(x) and
imaginaryP(x). They2,3 also extended their method to solve the full-line one-dimensional inv
problem for real Q(x) and imaginary P(x). In this method, using the scattering da
$R1(k),R2(k)%, a pair of two coupled Marchenko integral equations is solved and these solu
are used in a first-order ordinary differential equation whose solution leads toP(x). Jaulent4 also
extended this method to the case whenP(x) is real although complete details and proofs were
given. WhenP(x) is purely imaginary and*2`

` dz P(z)50, Sattinger and Szmigielski5 showed
that one can simplify the method of Jaulent and Jean and recoverP(x) by solving an algebraic
equation rather than a differential equation.

We should also mention the study by Kaup6 on the direct and inverse scattering problem

f91Fk21
1

4b2Gf5@ ikP~x!1Q~x!#f, ~1.5!

whereb is a nonzero constant andP,QPL1
1(R). Under certain additional assumptions onP(x),

Tsutsumi7 studied the scattering problem for~1.5! with b5 1
2 using a 232 matrix analog of~1.1!

with k replaced byAk211. WhenP andQ are in the Schwartz space,*2`
` dz P(z)50, andb

5 1
2, Sattinger and Szmigielski8 also studied the inverse scattering problem for~1.5!. In Refs. 6 and

8 the inverse scattering problem is analyzed by studying a Riemann–Hilbert problem on
ticular Riemann surface.

When P(x) is purely imaginary, the methods available for self-adjoint differential opera
can be employed to analyze the inverse scattering problem for~1.1!; furthermore, in this case2 the
scattering matricesS6(k) are unitary, and hence the reflection coefficients cannot exceed
absolute value. However, whenP(x) is real valued, the differential operator pertaining to~1.1! is
no longer self-adjoint and the scattering matricesS6(k) are no longer unitary. Consequently, th
analysis of the direct and inverse scattering problems with realP(x) is different and more difficult
than with imaginaryP(x). The standard proof9,10 of the absence of singularities of the transm
sion coefficient forkPR, which relies heavily on the self-adjointness of the differential opera
breaks down. Since the reflection coefficients may be larger than one in absolute valu
standard proof of the unique solvability of the Marchenko integral equations is no longer
Fortunately, whenP(x)<0, some of the usual properties of the one-dimensional Schro¨dinger
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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equation given in~2.6!, such as the simplicity of the poles of the transmission coefficient,
confinement of these poles to the imaginary axis in the upper-half complex planeC1, and the
absence of singularities of the transmission coefficient whenkPR are still valid for~1.1!, and the
proofs of such properties are obtained by a variation of the arguments used for~2.6!.

This paper is organized as follows. In Secs. II and III, relying on techniques establishe
variety of papers,10–12we study the analyticity properties of the Jost solutions of~1.1! and analyze
their small-k and large-k asymptotics. In Secs. IV–VI we analyze various properties of the s
tering matricesS6(k). In Sec. VII we study the change in the scattering coefficients whenP(x)
andQ(x) are perturbed. In Sec. VIII we analyze the relation between the poles ofT1(k) in C1

and the bound states; we also study multiple poles ofT1(k) in terms of Jordan chains of th
differential operator given in~8.3!. Recall that the bound state solutions of~1.1! and~1.2! are those
nontrivial solutions belonging toL2(R). In the radial case whenP(x)<0, under certain additiona
conditions onP8(x), using the theory of abstract operator polynomials, Pivovarchik has sh
that13 the number of bound states is independent ofP(x) and that14–16the bound states are simp
and can only occur whenk is located on the positive imaginary axis. In Sec. IX we study
bound states for~1.1! further and show that the poles ofT1(k) in C1 can only occur in a certain
region inC1 determined byP(x) andQ(x). WhenP(x)<0, we derive Pivovarchik’s results in a
elementary way without using the theory of abstract operator polynomials and without ass
the differentiability ofP(x); we also show that the bound states can only occur at certain neg
energies and obtain some lower and upper bounds for these energies. In Sec. IX we also o
Levinson theorem relating the number of bound states to the change in the argument ofT1(k),
and we show that the number of bound states is unchanged under certain small perturbatioP
andQ. In Sec. X we analyze the zeros of the Jost solutions and obtain various results conc
the number and location of these zeros and their relationship to the bound states; we also sh
the number of bound states of~1.1! with real energies is greater than or equal to the numbe
bound states withP(x)50. In Sec. XI, we show by examples that there may be bound states
complex energies and that the multiplicity of a bound state~in the sense of the order to whic
1/T1(k) vanishes! may be larger than one. Finally, in the Appendix we obtain various smak
estimates that are needed in the proof of Theorem 5.2.

II. ANALYTICITY AND SMALL- k ASYMPTOTICS OF JOST SOLUTIONS

Let us define the Faddeev functions from the left,ml
6(k,x), and from the right,mr

6(k,x), by

ml
6~k,x!5e2 ikxf l

6~k,x!, mr
6~k,x!5eikxf r

6~k,x!.

Thenml
6(k,x) satisfies

ml
6~k,x!511

1

2ik E
x

`

dy @e2ik~y2x!21#@6 ikP~y!1Q~y!#ml
6~k,y!, ~2.1!

ml
68~k,x!52E

x

`

dy e2ik~y2x!@6 ikP~y!1Q~y!#ml
6~k,y!. ~2.2!

By C1 we denoteC1øR. In the following theorem and throughout the paper we will useC to
denote a generic constant~independent ofx and k! that does not necessarily assume the sa
value at each appearance.

Theorem 2.1: ~i! Assume P,QPL1(R). Then, for eachxPR, the functionsml
6(k,x),

mr
6(k,x), ml

68(k,x), andmr
68(k,x) are analytic inC1 and continuous inC1\$0%. Consequently,

for eachxPR the Jost solutionsf l
6(k,x), f r

6(k,x) and their derivativesf l
68(k,x), f r

68(k,x) are
analytic inC1 and continuous inC1\$0%. Moreover, for eachkPC1\$0% we have
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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uml
6~k,x!u<CeC/uku, umr

6~k,x!u<CeC/uku, ~2.3!

ml
6~k,x!511o~1!, ml

68~k,x!5o~1!, x→1`,

mr
6~k,x!511o~1!, mr

68~k,x!5o~1!, x→2`.

~ii ! AssumePPL1(R) andQPL1
1(R). Then the continuity of the functions in~i! extends toC1.

Moreover, forkPC1 we have

uml
6~k,x!u<C@11max$0,2x%#, umr

6~k,x!u<C@11max$0, x%#, ~2.4!

ml
68~k,x!5o~1/x!, x→1`; mr

68~k,x!5o~1/x!, x→2`.

Proof: The proof is obtained from~2.1!, ~2.2!, and similar equations formr
6(k,x) in a manner

analogous10 to the case withP(x)50. In the proof of~ii !, one also uses the estimates

u12e2ik~y2x!u<2, u12e2ik~y2x!u<2uku~y2x!,

for kPC1 andy>x. j

WhenPPL1(R) andQPL1
1(R), using~2.1!, ~2.2!, and Theorem 2.1~ii !, we obtain

ml
6~k, x!5ml

6~0, x!1o~1!, ml
68~k, x!5ml

68~0, x!1o~1!, k→0 in C1, ~2.5!

uniformly on compactx-intervals. Let us consider the Schro¨dinger equation obtained from~1.1!
and ~1.2! by settingP(x)50, namely

c@0#9~k,x!1k2c@0#~k,x!5Q~x!c@0#~k, x!, xPR. ~2.6!

Let f l
@0#(k, x) and f r

@0#(k, x) denote the Jost solutions of~2.6! from the left and from the right,
respectively. From~1.1! and the corresponding boundary conditions we see thatf l

6(0,x), f r
6(0,x),

and their derivatives are determined byQ(x) alone and

ml
6~0,x!5 f l

6~0,x!5 f l
@0#~0,x!, ml

68~0,x!5 f l
68~0,x!5 f l

@0#8~0,x!, ~2.7!

As seen from~2.6! and ~2.7! we have

Q~x!5
f l

69~0,x!

f l
6~0,x!

5
f l

@0#9~0,x!

f l
@0#~0,x!

.

Let S@0#(k) denote the scattering matrix associated with~2.6!:

S@0#~k!5FT@0#~k!

L @0#~k!

R@0#~k!

T@0#~k! G ,
whereT@0#(k) is the transmission coefficient andR@0#(k) andL @0#(k) are the reflection coefficient
from the right and from the left, respectively. Genericallyf l

6(0,x) and f r
6(0,x) are linearly

independent, but in the so-called exceptional case these two functions are linearly depende
have9,10

@ f l
@0#~0,x!; f r

@0#~0, x!#5E
2`

`

dy Q~y!fl
@0#~0,y!5E

2`

`

dy Q~y! f r
@0#~0,y!5 lim

k→0

22ik

T@0#~k!
, ~2.8!

where@ f ;g#5 f g82 f 8g denotes the Wronskian. ThusT@0#(0)50 generically andT@0#(0)Þ0 in
the exceptional case. In the exceptional case, let us define

g5
f l

@0#~0,x!

f r
@0#~0,x!

. ~2.9!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Theng is a nonzero real constant determined byQ(x) alone, and we haveg5 f l
@0#(0,2`).

III. LARGE-k ASYMPTOTICS OF JOST SOLUTIONS

In this section we analyze the large-k asymptotics of the Jost solutions. We assume t
PPL1(R) and QPL1

1(R). The results given here will be used in Sec. VI to obtain the largk
asymptotics of the scattering matrixS1(k).

Let us define

h l
6~k, x!5e6zml

6~k, x!5e2 ikx6z f l
6~k, x!,

~3.1!

h r
6~k, x!5e6p7zmr

6~k, x!5eikx6p7z f r
6~k, x!,

where

z5z~x!5
1

2Ex

`

dz P~z!, p5
1

2E2`

`

dz P~z!, ~3.2!

so that*2`
x dz P(z)/25p2z. Thus

f l
6~k, x!5eikx7zh l

6~k, x!,
~3.3!

f l
68~k, x!5eikx7z@~ ik6P/2!h l

6~k, x!1h l
68~k, x!#,

f r
6~k, x!5e2 ikx7p6zh r

6~k, x!,
~3.4!

f r
68~k, x!5e2 ikx7p6z@~2 ik7P/2!h r

6~k, x!1h r
68~k, x!#.

Theorem 3.1: Assume P,QPL1(R). Then, for eachxPR, the functionsh l
6(k, x) and

h r
6(k, x) are analytic inC1, continuous inC1\$0%, and we have

uh l
6~k, x!u<CeC/uku, uh r

6~k, x!u<CeC/uku, kPC1\$0%. ~3.5!

If PPL1(R) and QPL1
1(R), then, for eachxPR, the functionsh l

6(k, x) and h r
6(k, x) are

continuous inC1, and we have

uh l
6~k, x!u<C@11max$0,2x%#, uh r

6~k, x!u<C@11max$0,x%#, kPC1. ~3.6!

Moreover, if P,QPL1(R), then

h l
6~k, x !511o~1!, h r

6~k, x !511o~1!, k→` in C1, ~3.7!

h l
68~k, x !5o~k!, h r

68~k, x !5o~k!, k→` in C1. ~3.8!

Proof: The analyticity inC1, the continuity inC1\$0%, and~3.5! and~3.6! follow from ~3.1!
and Theorem 2.1~i!. To prove~3.7! we use~3.1! in ~2.1!. Letting z(k, x )5h l

1(k, x )21, after
some simplifications, we obtain

z~k, x !5z0~k, x !1
1

2ik E
x

`

dy @e2ik~y2x!21#ez~x!2z~y!@ ikP~y!1Q~y!#z~k,y!, ~3.9!

with

z0~k,x!5
1

2 E
x

`

dy e2ik~y2x!ez~x!2z~y!P~y!1
1

2ik E
x

`

dy @e2ik~y2x!21#ez~x!2z~y!Q~y!.

~3.10!

Using ~2.4! in ~3.10! we get
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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uz0~k, x !u<C1E
x

`

dy @ uP~y!u1uQ~y!u/uku#, kPC1\$0%,

where C1 is a suitable constant. For eachxPR, let sx(k)5supt>xuz0(k, t)u. Solving ~3.9! by
iteration we obtain

uz~k, x !u<sx~k!eC1*x
`dy @ uP~y!u1uQ~y!u/uku#. ~3.11!

Applying the Riemann–Lebesgue lemma to~3.10!, we get

sx~k!5o~1!, k→6`. ~3.12!

Using ~3.11! and ~3.12! we see thatz(k, x ) is uniformly bounded inC1 for uku>a.0 for each
xPR anda.0. Hence, in view of~3.12! and a Phragme´n–Lindelöf theorem17 we conclude that
z(k, x )→0 ask→` in C1. The proof of~3.7! for h l

2(k, x ) andh r
6(k, x ) is similar. To prove

~3.8! for h l
18(k, x ) we introduce the functions

j l
6~k, x !5

1

2ik
@6P~x!h l

6~k, x !12h l
68~k, x !#,

~3.13!

j r
6~k, x !5

1

2ik
@7P~x!h r

6~k, x !12h r
68~k, x !#.

Sincej l
6(k, x )5(1/ik) ml

68(k, x )e6z, it follows from ~3.1! and ~3.13! that

j l
1~k, x !52E

x

`

dy @P~y!2 iQ~y!/k#e2ik~y2x!ez~x!2z~y!h l
1~k,y!. ~3.14!

Thus, using~3.5!, we see that the integrand on the right-hand side of~3.14! is bounded by the
integrable functionCa@ uP(y)u1uQ(y)u/a#, uniformly in x and kPC1 for uku>a.0 and each
a.0, where the constantCa only depends ona but not onx andk. By a variant of the Riemann–
Lebesgue lemma, we conclude that the right-hand side of~3.14! is o~1! ask→6`, so that by a
Phragme´n–Lindelöf theorem,17 we see that the left-hand side of~3.14! is o~1! as k→` in C1.
Consequently,j l

1(k, x )5o(1) ask→` in C1, and so~3.8! for h l
18(k, x ) follows by using

~3.13!. The proof of~3.8! for h l
28(k, x ) andh r

68(k, x ) is similar. j

Let us also mention that it is possible to study the largek-behavior of the solutions of~1.1! by
converting it into a system of two coupled, first-order differential equations. We will not give
details here but refer the interested reader to Ref. 18.

IV. SCATTERING COEFFICIENTS

In this section we summarize some basic facts about the scattering coefficients. In par
we are concerned with symmetries, Wronskian relations, analyticity, and continuity prope
Applications and refinements of these results will be given in the subsequent sections. No
since P(x) is assumed to be real,S6(k) is not unitary. However, there are certain relatio
~Proposition 4.3! involving the scattering coefficients which reduce to the usual unitarity relat
whenP(x)50.

We begin with the observation that whenkPR, the quantitiesf l
2(2k, x ) and f r

2(2k, x ) are
also solutions of~1.1! and hence can be expressed as linear combinations off l

1(k, x ) and
f r

1(k, x ), unless the latter functions are linearly dependent. Using~1.3! and ~1.4! we obtain the
two vector equations

F f l
7~2k, x !

f r
7~2k, x !G5F T6~k!

2L6~k!

2R6~k!

T6~k! GF f r
6~k, x !

f l
6~k, x! G , kPR. ~4.1!

In general, f l
7(2k, x) and f r

7(2k, x) cannot be continued toC1 as functions ofk because
f l

6(k, x) and f r
6(k, x) usually cannot be extended to the lower-half complex planeC2.
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Using ~1.3! and ~1.4!, the scattering coefficients can be expressed2 in terms of Wronskians:

@ f l
6~k, x !; f r

6~k, x !#52
2ik

T6~k!
, kPC1, ~4.2!

@ f l
6~k, x !; f r

7~2k, x !#5
2ikL6~k!

T6~k!
52

2ikR7~2k!

T7~2k!
, ~4.3!

@ f r
6~k, x !; f l

7~2k, x !#52
2ikR6~k!

T6~k!
5

2ikL7~2k!

T7~2k!
, ~4.4!

@ f l
6~k, x !; f l

7~2k, x !#522ik522ik
12L6~k!L7~2k!

T6~k!T7~2k!
, ~4.5!

@ f r
6~k, x !; f r

7~2k, x !#52ik52ik
12R6~k!R7~2k!

T6~k!T7~2k!
. ~4.6!

Let an overline denote complex conjugation. It is already known2 that

f l
6~2 k̄, x!5 f l

6~k, x !, f r
6~2 k̄, x!5 f r

6~k, x !, kPC1, ~4.7!

f l
6~2k, x !5 f l

6~k, x !, f r
6~2k, x !5 f r

6~k, x !, kPR, ~4.8!

1

T6~2 k̄!
5

1

T6~k!
, kPC1\$0%, ~4.9!

S6~2k!5S6~k!, S6~k!S7~2k! t5I , kPR, ~4.10!

whereI is the 232 unit matrix and the superscriptt denotes the matrix transpose. It is understo
that ~4.10! holds only at the points where the scattering coefficients are defined; we will see
that S6(k) may not be defined for certain real values ofk.

From ~4.10! we see that

T7~k!5
T6~2k!

T6~2k!22L6~2k!R6~2k!
,

and therefore

det S6~k!5T6~k!22L6~k!R6~k!5
T6~k!

T7~2k!
, kPR. ~4.11!

It follows from ~4.9! that the zeros of 1/T6(k) either lie on or are symmetrically located wit
respect to the imaginary axis inC1; in particular, 1/T1(k0)50 for somek0PR\$0% implies that
1/T1(2k0)50.

Proposition 4.1:AssumeP,QPL1(R). Then:~i! 1/T6(k) are analytic inC1, continuous in
C1\$0%, and bounded in the sector$kPC1:uku>a.0% for every a.0. If, in addition,
QPL1

1(R), thenk/@(k1 i )T6(k)# are continuous and bounded inC1, andkL6(k)/T6(k) and
kR6(k)/T6(k) are continuous and bounded inR. Consequently,T6(k) cannot have any zeros i
C1\$0%. ~ii ! The zeros ofk/@(k1 i )T6(k)# in C1 are all isolated, and their accumulation poin
if any, must lie on the real axis or at infinity.

Proof: All the assertions follow from~4.3!, ~4.4!, ~4.9!, and Theorem 2.1. j

Note that contrary to the case whereP(x) is either zero or purely imaginary, we cannota
priori rule out possible singularities of the scattering coefficientsT6(k), R6(k), andL6(k) on
the real axis. In Examples 11.2 and 11.4, we show that 1/T1(k) may have zeros onR or off the
imaginary axis inC1.
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



s

t

ric

1964 J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee

Downloaded 
Proposition 4.2:AssumeP,QPL1(R). Then, for anyk0PR\$0%, the quantities 1/T1(k0) and
R6(k0)/T6(k0) cannot be zero simultaneously; similarly, 1/T1(k0) and L6(k0)/T6(k0) cannot
be zero simultaneously. If 1/T1(k0)50 for somek0PR\$0%, then none of the eight quantitie
R6(k0)/T6(k0), L6(k0)/T6(k0), R6(2k0)/T6(2k0), L6(2k0)/T6(2k0) are zero. Moreover,
R1(k) is continuous forkPR\$0% if and only if 1/T1(k) does not vanish forkPR\$0%. Similarly,
L1(k) is continuous forkPR\$0% if and only if 1/T1(k) does not vanish forkPR\$0%.

Proof: By Proposition 4.1 we know that 1/T6(k), R6(k)/T6(k), L6(k)/T6(k) are continu-
ous whenkPR\$0%. Moreover, the right-hand sides in~4.5! and ~4.6! cannot be zero whenk
Þ0. j

Note that, if 1/T1(k0)50 for some k0PR\$0%, from ~4.2! we see thatf l
1(k0 ,x) and

f r
1(k0 ,x) are linearly dependent, and from~1.3! and ~1.4! we obtain

f l
1~k0 , x!

f r
1~k0 , x!

5
L1~k0!

T1~k0!
5

T1~k0!

R1~k0!
.

Moreover, if 1/T1(k)5c(k2k0)m1o(k2k0)m ask→k0 , for some nonzero constantc and posi-
tive integerm, then R(k)5d(k2k0)2m1o(k2k0)2m as k→k0 with dÞ0. Thus, we see tha
T1(k) is continuous forkPR\$0% if and only if R1(k) @or L1(k)# is continuous.

Proposition 4.3:AssumeP,QPL1(R). The scattering coefficients satisfy

1

uT6~k!u2
511UL6~k!

T6~k!
U2

7E
2`

`

dx u f l
6~k, x!u2P~x!, kPR\$0%, ~4.12!

1

uT6~k!u2 511UR6~k!

T6~k!
U2

7E
2`

`

dx u f r
6~k, x!u2P~x!, kPR\$0%. ~4.13!

Hence, ifP(x)<0, then 1/T1(k) cannot have any zeros forkPR, and we have

uT1~k!u21uL1~k!u2<1, uT1~k!u21uR1~k!u2<1, kPR\$0%. ~4.14!

If 1/T1(k) does not have any zeros forkPR\$0% andP(x)>0, then we have

uT1~k!u21uL1~k!u2>1, uT1~k!u21uR1~k!u2>1, kPR\$0%. ~4.15!

Moreover, if P(x)<0, then 1/uT1(k)u>1/uT2(k)u for kPR\$0%.
Proof: From ~1.1! and ~1.2! we obtain

d

dx
@ f l

6~2k, x!; f l
6~k, x!#562ik f l

6~2k, x! f l
6~k, x!P~x!, ~4.16!

d

dx
@ f r

6~2k, x!; f r
6~k, x!#562ik f r

6~2k, x! f r
6~k, x!P~x!. ~4.17!

Hence, using~1.3!, ~1.4!, ~4.8!, ~4.10! in ~4.16! and ~4.17!, for kPR\$0%, we obtain~4.12! and
~4.13!, which imply ~4.14! and ~4.15!. The last inequality follows from~4.10! by subtracting
~4.12! from ~4.13!. j

V. SMALL- k ANALYSIS OF SCATTERING COEFFICIENTS

In this section we analyze the small-k asymptotics ofS6(k). Our results will depend on
whether we are in the generic or the exceptional case.

Proposition 5.1:AssumePPL1(R) and QPL1
1(R) and suppose that we are in the gene

case. ThenR6(0)5L6(0)521, T6(k) vanish linearly ask→0 in C1, and

lim
k→0

2ik

T1~k!
5 lim

k→0

2ik

T2~k!
5 lim

k→0

2ik

T@0#~k!
. ~5.1!
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Furthermore, detS6(0)521, and

T6~k!5
22ik

*2`
` dy Q~y! f l

@0#~0,y!
1o~k!, k→0 in C1. ~5.2!

Proof: ~5.1! follows from ~4.2! and Theorem 2.1~ii !. Since genericallyR@0#(0)5L @0#(0)
521, from ~4.3! and~4.4! in the limit k→0 we getR6(0)5L6(0)521. Then, using~4.11! we
obtain detS6(0)521. From~2.8! and ~5.1! we obtain~5.2!. j

Under stronger conditions onP andQ, the small-k asymptotics of the scattering coefficien
in the generic case were known@see, e.g., Ref. 2 in the case with imaginaryP(x)#. Next we study
the small-k asymptotics of the scattering coefficients in the exceptional case, and we show
S6(0) is affected byP(x).

Theorem 5.2: In the exceptional case, under the assumptionsP,QPL1
1(R), we have

T6~0!5
2g

g2117*2`
` dx P~x! f l

@0#~0, x!2 , ~5.3!

L6~0!5
g2216*2`

` dx P~x! f l
@0#~0, x!2

g2117*2`
` dx P~x! f l

@0#~0, x!2 , ~5.4!

R6~0!5
12g26*2`

` dx P~x! f l
@0#~0, x!2

g2117*2`
` dx P~x! f l

@0#~0, x!2 , ~5.5!

whereg is the constant defined in~2.9!.
Proof: The technical details of the proof are given in the Appendix. As in the caseP(x)

50 the difficulty is to prove that the transmission coefficients are continuous atk50. This is only
straightforward ifP,QPL2

1(R) as10 in the caseP(x)50, but not if P,QPL1
1(R). We obtain

T1(0) in ~5.3! by using~A18! and ~A19! in ~A17! and also using~4.2!. The value ofT2(0) in
~5.3! is obtained by changing the sign ofP(x). In order to obtainL1(0) in ~5.4!, as in the
displayed equation following~A32! of Ref. 12, we first derive

f l~0,0!@ f l
1~k, x!; f r

2~2k, x!#

5 f r
2~2k,0!F2 ik f l~0,0!1 f l8~0,0!1E

0

`

dz eikz@ ikP~z!1Q~z!#c̃~k,z!G
2 f l

1~k,0!F2 ik f l~0,0!1 f l8~0,0!2E
2`

0

dz eikz@ ikP~z!1Q~z!#c̃~k,z!G , ~5.6!

where c̃(k, x) is the function in ~A2!. Estimating various terms in~5.6! as in the proof of
Proposition A.4 in connection with~A17!, and also by using~4.3!, we obtainL1(0) in ~5.4!.
Similarly we obtainR1(0) in ~5.5!. The values ofL2(0) andR2(0) are obtained fromL1(0)
andR1(0) by changing the sign ofP(x). j

In the exceptional case, it is possible thatS6(k) is discontinuous atk50, and as seen from
~5.3!–~5.5! this happens if and only if*2`

` dx P(x) f l
@0#(0,x)256(g211). For example, if

Q(x)50, we havef l
@0#(0,x)5 f r

@0#(0,x)51, and henceg51. Thus

1

T6~0!
517

1

2 E
2`

`

dx P~x!. ~5.7!

Hence, if*2`
` dx P(x)562, thenS6(0) is undefined.

We remark that in the exceptional case, whenS6(k) is continuous atk50, we can obtain
~5.3!–~5.5! also as follows. In~4.1! let k→0 and use~2.7! and ~2.9! to get
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g5
f l

6~0, x!

f r
6~0, x!

5
T6~0!

11R6~0!
5

T@0#~0!

11R@0#0
5

11L @0#~0!

T@0#~0!
5

11L6~0!

T6~0!
. ~5.8!

Combining~5.8! with ~4.12! for k50 and eliminatingL6(0)/T6(0), we get

11g22
2g

T6~0!
56E

2`

`

dx P~x! f l
@0#~0, x!2,

which gives us~5.3!. Then, using~5.3! in ~5.8! we obtain~5.4! and ~5.5!.
In the exceptional case, sinceS6(0) is real valued, from~5.8! it is seen thatS6(0) is a unitary

matrix if and only if R6(0)52L6(0). By ~5.4! and ~5.5!, this occurs when the integra
*2`

` dx P(x) f l
@0#(0,x)2 vanishes in which case we haveS6(0)5S@0#(0) and detS6(0)51.

From the discussion above and Theorem 5.2 we obtain:
Proposition 5.3:Assume thatPPL1(R) and QPL1

1(R) in the generic case and thatP,Q
PL1

1(R) in the exceptional case. If any one of the quantities 1/T6(k),
R6(k)/T6(k),L6(k)/T6(k) is discontinuous atk50, then all six are discontinuous atk50 and
we are in the generic case. If any one of the quantities 1/T6(k), R6(k)/T6(k), L6(k)/T6(k) is
continuous atk50, then all six are continuous atk50 and we are in the exceptional cas
Moreover, the three quantitiesT1(k), R1(k), L1(k) @or T2(k), R2(k), L2(k)# are all continu-
ous onR, or they are all discontinuous onR.

VI. LARGE-k ANALYSIS OF SCATTERING COEFFICIENTS

In this section we analyze the large-k asymptotics ofS6(k). Similar results were obtained
under stronger conditions onP(x) andQ(x) @see, e.g., Ref. 2 in the case with imaginaryP(x)#.

Theorem 6.1:AssumeP,QPL1(R). Then

1

T6~k!
e6p511o~1!, k→` in C1, ~6.1!

R6~k!

T6~k!
5o~1!,

L6~k!

T6~k!
5o~1!, k→6`, ~6.2!

wherep is the constant defined in~3.2!.
Proof: From ~4.2! using ~3.3! and ~3.4!, we obtain

2ik

T6~k!
e6p5@2ik6P~x!#h l

6~k, x !h r
6~k, x !1h l

68~k, x !h r
6~k, x !2h l

6~k, x !h r
68~k, x !.

~6.3!

Now ~6.1! follows from ~3.7!, ~3.8!, and~6.3!. Similarly, using~3.3!, ~3.4!, and~4.4!, we have

2
2ikR6~k!

T6~k!
5e22ikx7p62z@h r

6~k, x !;h l
7~2k, x !#, kPR, ~6.4!

and the first relation in~6.2! follows by using~3.7! and ~3.8! in ~6.4!. The proof of the second
relation in ~6.2! is analogous, using~4.3!. j

Note that from~6.1! it follows that ep is known when either ofT6(k) is known. From
Proposition 4.1 and Theorem 6.1, we have:

Corollary 6.2: AssumeP,QPL1(R). If 1/T6(k) does not vanish forkPR, then its number
of zeros inC1 is finite.
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VII. PERTURBATION OF SCATTERING COEFFICIENTS

In this section we establish the stability of 1/T1(k), R1(k)/T1(k), andL1(k)/T1(k) under
small perturbations ofP andQ in the norm of eitherL1(R) or L1

1(R). We will not state the results
for R1(k)/T1(k), since they are identical to those forL1(k)/T1(k). An application of these
results will be given in Sec. IX.

Given two sets of potentialsPj (x) and Qj (x) with j 51,2, we consider the generalize
Schrödinger equations

c j
19~k, x!1k2c j

1~k, x!5@ ikPj~x!1Qj~x!#c j
1~k, x!, xPR, ~7.1!

and denote their corresponding Faddeev solutions byml ; j
1 (k, x) andmr ; j

1 (k, x), their transmission
coefficients byTj

1(k), and their reflection coefficients from the right and from the left byRj
1(k)

andL j
1(k), respectively.

Proposition 7.1:AssumePj ,QjPL1(R) for j 51,2. Then forkPC1 with uku>1, we have

U 1

T1
1~k!

2
1

T2
1~k!

U<C~ iP12P2i11iQ12Q2i1!, ~7.2!

and forkPR with uku>1, we have

UL1
1~k!

T1
1~k!

2
L2

1~k!

T2
1~k!

U<C~ iP12P2i11iQ12Q2i1!. ~7.3!

Proof: First, by iterating~2.1! and using~2.3!, we obtain

uml ;1
1 ~k, x!2ml ;2

1 ~k, x!u<C1~ iP12P2i11iQ12Q2i1!, ~7.4!

for some constantC1 . Furthermore, from~1.3! and ~2.1! we obtain

1

T6~k!
512

1

2ik E
2`

`

dy @6 ikP~y!1Q~y!#ml
6~k,y!, ~7.5!

L6~k!

T6~k!
5

1

2ik E
2`

`

dy e22iky@6 ikP~y!1Q~y!#ml
6~k,y!. ~7.6!

Now using~7.4! in ~7.5! we get~7.2!. The proof of~7.3! is similarly obtained by using~7.4! and
~7.6!. j

Proposition 7.2:AssumePjPL1(R) and QjPL1
1(R) for j 51,2. Then, forkPC1 with uku

<1, we have

US k

T1
1~k!

2
k

T2
1~k! DU<C~ iP12P2i11iQ12Q2i1,1!, ~7.7!

and forkPR with uku<1, we have

US kL1
1~k!

T1
1~k!

2
kL2

1~k!

T2
1~k!

D U<C~ iP12P2i11iQ12Q2i1,1!. ~7.8!

Proof: Iterating ~2.1! with the help of~2.4! and the inequality

11max$0,2y%

11max$0,2x%
~y2x!<11uyu, y>x, ~7.9!

we obtain

ukml ; j
1 ~k, x!u<C1 , uku<1 ~7.10!
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uml ;1
1 ~k, x!2ml ;2

1 ~k, x!<C2@11max$0,2x%#~ iP12P2i11iQ12Q2i1,1!, ~7.11!

ukml ;1
1 ~k, x!2kml ;2

1 ~k, x!u<C3~ iP12P2i11iQ12Q2i1,1!, uku<1, ~7.12!

for some constantsC1 , C2 , andC3 . Then~7.7! and~7.8! follow from using~2.4!, ~7.10!–~7.12!
in ~7.5! and ~7.6!. j

Proposition 7.3:AssumePj ,QjPL1
1(R) for j 51,2 andQ1(x)5Q2(x). Then, we have

U 1

T1
1~k!

2
1

T2
1~k!

U<CiP12P2i1,1, kPC1, ~7.13!

UL1
1~k!

T1
1~k!

2
L2

1~k!

T2
1~k!

U<CiP12P2i1,1, kPR. ~7.14!

Proof: First from ~2.4!, ~7.9!, and~2.1! we get

uml ;1
1 ~k, x!2ml ;2

1 ~k, x!u<C1uku@11max$0,2x%#iP12P2i1,1, ~7.15!

for some constantC1 . Using ~2.4!, ~7.11!, and ~7.15! in ~7.5! and ~7.6! we obtain~7.13! and
~7.14!. j

VIII. BOUND STATES AND JORDAN CHAINS

Recall that the bound states of~1.1! are its nontrivial solutions belonging toL2(R). In this
section we show that the zeros of 1/T1(k) in C1 correspond to the bound states of~1.1!. We also
analyze the order of each zero of 1/T1(k) in C1 in terms of Jordan chains of the differenti
operatorW(k) defined in~8.3!.

Proposition 8.1:AssumeP,QPL1(R). A point k0PC1 corresponds to a bound state of~1.1!
if and only if 1/T1(k0)50. If k0PR\$0% and 1/T1(k0)50, thenk0 does not correspond to
bound state of~1.1!; if we further assumeQPL1

1(R), thenk50 cannot correspond to a boun
state even when 1/T1(0)50.

Proof: The first assertion follows from~4.2! and Theorem 2.1~i!. For k0PR\$0% every
nontrivial solution of~1.1! has the asymptotic formc1eik0x1c2e2 ik0x1o(1) asx→1`, with the
constantsc1 andc2 not both equal to zero, and hence cannot be inL2(R). If QPL1

1(R), then
k050 cannot be a bound state because any nontrivial solution of~1.1! for k50 has the asymptotic
form c1x@11o(1)#1c21o(1) asx→1`, with c1 and c2 not both equal to zero. Hence, th
proof is complete. j

Next we analyze multiple poles ofT1(k). Let us differentiate~1.1! with c5 f l
1(k, x) or c

5 f r
1(k, x) with respect tok repeatedly. Defining

gl ,n
1 ~k, x!5

1

n! S ]

]kD n

f l
1~k, x!, gr ,n

1 ~k, x!5
1

n! S ]

]kD n

f r
1~k, x!, n50,1,2,..., ~8.1!

and gl ,n
1 (k, x)5gr ,n

1 (k, x)50 for n521,22,..., we obtain the coupled system of different
equations

gl ,n
19~k, x!1k2gl ,n

1 ~k, x!12kgl ,n21
1 ~k, x!1gl ,n22

1 ~k, x!

5@ ikP~x!1Q~x!#gl ,n
1 ~k, x!1 iP~x!gl ,n21

1 ~k, x!,
~8.2!

gr ,n
19~k, x!1k2gr ,n

1 ~k, x!12kgr ,n21
1 ~k, x!1gr ,n22

1 ~k, x!

5@ ikP~x!1Q~x!#gr ,n
1 ~k, x!1 iP~x!gr ,n21

1 ~k, x!.

Defining the differential operator

W~k!52k22
d2

dx2 1 ikP1Q, ~8.3!
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so thatẆ(k)522k1 iP andẄ(k)522I , we obtain the system of linear equations

T~k!gl
1~k, x!50, ~8.4!

where0 is the zero column vector ofm components,gl
1(k, x) is the column vector

@gl ,m21
1 ~k, x!,...,gl ,0

1 ~k, x!# t,

andT(k) is them3m Toeplitz matrix given by

T~k!53
W~k! Ẇ~k! 1

2Ẅ~k! 0 0 0 ••• 0 0 0

0 W~k! Ẇ~k! 1
2Ẅ~k! 0 0 ••• 0 0 0

0 0 W~k! Ẇ~k! 1
2Ẅ~k! 0 ••• 0 0 0

A A A A A A � A A A

0 0 0 0 0 0 ••• 0 W~k! Ẇ~k!

0 0 0 0 0 0 ••• 0 0 W~k!

4 .

Using the Leibnitz formula for repeated derivatives of products, we find from~4.2!

1

n! S d

dkD
n 22ik

T1~k!
5(

j 50

n

@gl , j
1 ~k, x!;gr ;n2 j

1 ~k, x!#. ~8.5!

We call k0PC1 an eigenvalue ofW(k) if there exists a nontrivialfPL2(R) such that
W(k0)f50. Because of Proposition 8.1, this is equivalent to 1/T1(k0)50. Further,f is called an
eigenfunction ofW(k) corresponding to the eigenvaluek0 . More generally,19 if k0 is an eigen-
value of W(k), then the string of functionsf0 ,...,fm21 in L2(R) is called a Jordan chain o
length m corresponding to the eigenvaluek0 if f0Þ0 and ~8.4! holds with
@gl ,m21

1 (k0 ,x),...,gl ,0
1 (k0, x)# t replaced by the column vector@fm21(k0 ,x),...,f0(k0, x)# t.

Proposition 8.2: Assume P,QPL1(R) and let k0PC1 be an eigenvalue ofW(k). If
$gl , j

1 (k0,•)% j 50
m21 is a Jordan chain ofW(k) of lengthm at the eigenvaluek0 , then forn50,1,...,

m21, we have asx→6`

gl ,n
1 ~k0, x!5O@~11uxu!ne2uxuIm k0#, gr ,n

1 ~k0, x!5O@~11uxu!ne2uxuIm k0#, ~8.6!

gl ,n
18~k0, x!5O@~11uxu!ne2uxuIm k0#, gr ,n

18~k0, x!5O@~11uxu!ne2uxuIm k0#. ~8.7!

Proof: If k0PC1 is an eigenvalue ofW(k), by Proposition 8.1 we have 1/T1(k0)50. Hence
f l

1(k0, x) and f r
1(k0, x) are linearly dependent, and thus we need to prove~8.6! and~8.7! only for

gl ,n
1 (k0, x) andgl ,n

18(k0, x). For n50 these follow from Theorem 2.1~i!. The following argument
used to prove~8.6! and ~8.7! for n5m21 can be used recursively forn51,...,m22. Note that,
for eachkPC1, ~1.1! has20 an unbounded solutionX(k, x) such that

X~k, x!5O~euxuIm k!, X8~k, x!5O~euxuIm k!, x→6`. ~8.8!

Let us chooseX(k0 , x! such that@ f l
1(k0, x);X(k0 , x)#51. Let us consider~8.2! as a second-orde

linear, nonhomogeneous differential equation forgl ,m21
1 (k0, x) and solve it by variation of pa-

rameters using the linearly independent solutionsf l
1(k0, x) andX(k0, x) of ~1.1!. We obtain

gl ,m21
1 ~k0, x!5am21f l

1~k0, x!1bm21X~k0, x!2E
0

x

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!

2gl ,m23
1 ~k0,y!…@ f l

1~k0, x!X~k0 ,y!2 f l
1~k0,y!X~k0, x!#, ~8.9!
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with arbitrary constantsam21 and bm21 . Since gl ,n(k0,•)PL2(R) for n50,1,..., m22 and
X(k0, x) is unbounded asx→6`, the term proportional toX(k0, x) in ~8.9! must vanish. Thus
we must have

bm211E
0

`

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0,y!50,

bm212E
2`

`

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0 ,y!50,

and hence

E
2`

`

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0,y!50. ~8.10!

Using ~8.10!, we can write~8.9! as

gl ,m21
1 ~k0, x!5A~k0, x!X~k0, x!1 f l

1~k0, x!

3Fam212E
0

x

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…X~k0,y!G ,
~8.11!

where we have

A~k0, x!55 E2`

x

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0,y!, x<0,

E
x

`

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0,y!, x>0.

~8.12!

Using ~8.6! for n50,1,...,m22, ~8.8!, and ~8.12!, we obtain~8.6! for gl ,m21
1 (k0, x). Differenti-

ating ~8.11! and using~8.10!, we obtain

gl ,m21
18 ~k0, x!5@am212I 1~x!# f l

18~k0, x!1X8~k0, x!I 2~x!,

where

I 1~x!5E
0

x

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…X~k0,y!,

I 2~x!5E
2`

x

dy„@ iP~y!22k0#gl ,m22
1 ~k0,y!2gl ,m23

1 ~k0,y!…f l
1~k0,y!.

Finally, we obtain~8.7! for gl ,m21
18 (k0, x) by using~8.6! for n50,1,...,m22, ~8.8!, and~8.12!.j

Proposition 8.3:AssumeP,QPL1(R) and letk0PC1 be an eigenvalue ofW(k). Then for
n50,1,...,m21, we have

E
2`

`

dy„@ iP~y!22k0#gl ,n21
1 ~k0,y!2gl ,n22

1 ~k0,y!…f l
1~k0,y!50 ~8.13!

if and only if $gl , j
1 (k0,•)% j 50

m21 is a Jordan chain ofW(k) of length m corresponding to the
eigenvaluek0 .

Proof: If ~8.13! holds forn51, then we must havef l
1(k0,•)PL2(R); from Proposition 8.2

and its proof it is seen thatf l
1(k0,•)PL2(R) only if gl ,0

1 (k0, x)5 f l
1(k0, x! is an eigenvector of

W(k). Recursively, we can show thatgl ,n
1 given in ~8.1! satisfies~8.4!, ~8.6!, and~8.7!, and hence
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gl ,n
1 (k0,•)PL2(R) for n51,...,m21. Thus$gl , j

1 (k0,•)% j 50
m21 is a Jordan chain ofW(k) of lengthm

corresponding to the eigenvaluek0 . The converse is proved by proceeding recursively as in
proof of Proposition 8.2 leading to~8.10!. j

Theorem 8.4:AssumeP,QPL1(R) and letk0PC1. Then the following four statements ar
equivalent:

~a! W(k) has a Jordan chain of lengthm corresponding to the eigenvaluek0 .

~b! $gl , j
1 (k0,•)% j 50

m21 is a Jordan chain ofW(k) of lengthm corresponding to the eigenvaluek0 .

~c! $gr , j
1 (k0,•)% j 50

m21 is a Jordan chain ofW(k) of lengthm corresponding to the eigenvaluek0 .

~d! 1/T1(k) has a zero atk0 of order at leastm.

Proof: Clearly ~b! implies ~a!. Now assume~a! holds and let$f j% j 50
m21 be a Jordan chain o

W(k) of lengthm at the eigenvaluek0 . Thenf0 must be proportional tof l
1(k0, x) and f r

1(k0, x)
because the latter two are linearly dependent andf0(k0, x) is a solution of~1.1! for k5k0 . Thus
we haveW(k0)gl ,0

1 (k0, x)50 and consequently~8.2! is satisfied forn50,1,...,m21. Hence~b!
holds.

Note that~b! and ~c! are equivalent because, ifW(k0)gl ,0
1 (k0, x)50 for somek0PC1 and

gl ,0
1 (k0,•)PL2(R), by Proposition 8.1 we must have 1/T1(k0)50 and hencegr ,0

1 (k0, x) must be
a constant multiple ofgl ,0

1 (k0, x).
If ~b! holds, then~8.6! and ~8.7! must hold forn50,1,...,m21 because of Proposition 8.2

Then, forn50,1,...,m21, by evaluating the right-hand side of~8.5! at x52` or atx51`, we
find that its left-hand side must be zero and thus~d! holds. Now assume that~d! holds and let us
show that~b! is true. By Proposition 8.3 it is sufficient to show that~8.13! is satisfied forn
50,1,...,m21. We will do this recursively. First notice that~8.13! trivially holds for n50 be-
causegl ,21

1 (k0, x )5gl ,22
1 (k0, x )50 and that~8.6! and~8.7! hold for gl ,0

1 andgl ,0
18 , respectively,

because 1/T1(k0)50 and thusf l
1(k0, x ) is exponentially decaying asuxu→`. For n51,...,m

22, the proofs of~8.13! and of ~8.6! and ~8.7! for gl ,n
1 andgl ,n

18 , respectively, are similar to the
case whenn5m21. Thus, it suffices to give the proofs forn5m21 by assuming that thes
equations hold forn51,...,m22. Using ~1.1! for gr ,0

1 (k0, x ) and ~8.2! for gl ,m21
1 (k0, x ), we

obtain the Wronskian relation

2
d

dx
@gl ,m21

1 ~k0, x !;gr ,0
1 ~k0, x !#5„@ iP~x!22k0#gl ,m22

1 ~k0, x !2gl ,m23
1 ~k0, x !…gr ,0

1 ~k0, x !.

~8.14!

In a similar way, we obtain

d

dx
@gl ,0

1 ~k0, x !;gr ,m21
1 ~k0, x !#5„@ iP~x!22k0#gr ,m22

1 ~k0, x !2gr ,m23
1 ~k0, x !…gl ,0

1 ~k0, x !.

~8.15!

Integrating~8.14! and ~8.15! we get

E
2`

`

dy „@ iP~y!22k0#gl ,m22
1 ~k0, y!2gl ,m23

1 ~k0,y!…gr ,0
1 ~k0,y!

5 lim
x→2`

@gl ,m21
1 ~k0, x!;gr ,0

1 ~k0, x!#2 lim
x→1`

@gl ,m21
1 ~k0, x!;gr ,0

1 ~k0, x!#, ~8.16!

E
2`

`

dy „@ iP~y!22k0#gr ,m22
1 ~k0,y!2gr ,m23

1 ~k0,y!…gl ,0
1 ~k0,y!

5 lim
x→1`

@gl ,0
1 ~k0, x!;gr ,m21

1 ~k0, x!#2 lim
x→2`

@gl ,0
1 ~k0, x!;gr ,m21

1 ~k0, x!#. ~8.17!

Because~8.6! and ~8.7! hold for n50,1,...,m22, we have
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lim
x→6`

(
j 51

m22

@gl , j
1 ~k0, x!;gr ;m2 j

1 ~k0, x!#50. ~8.18!

Since 1/T1(k0) is assumed to have a zero of order at leastm, using~8.5! for n5m21 and~8.18!,
we obtain

lim
x→6`

„@gl ,0
1 ~k0, x!;gr ,m21

1 ~k0, x!#1@gl ,m21
1 ~k0, x!;gr ,0

1 ~k0, x!#…50. ~8.19!

Using the linear dependence ofgl ,0
1 (k0,x) and gr ,0

1 (k0,x) and the exponential decay o
gl ,m21

1 (k0,x) asx→1` and ofgr ,m21
1 (k0,x) asx→2`, we first conclude that

lim
x→1`

@gl ,m21
1 ~k0, x!;gr ,0

1 ~k0, x!#50, lim
x→2`

@gl ,0
1 ~k0, x!;gr ,m21

1 ~k0, x!#50. ~8.20!

Now, from ~8.19! and ~8.20! we see that

lim
x→2`

@gl ,m21
1 ~k0, x!;gr ,0

1 ~k0, x!#50, lim
x→1`

@gl ,0
1 ~k0, x!;gr ,m21

1 ~k0, x!#50, ~8.21!

and thus using~8.20! and ~8.21! in ~8.16! and ~8.17!, we get

E
2`

`

dy „@ iP~y!22k0#gl ,m21
1 ~k0,y!2gl ,m22

1 ~k0,y!…gr ,0
1 ~k0,y!50.

Thus ~8.13! is proved forn5m21, and hence~b! holds. j

IX. BOUND STATES AND POLES OF T1
„k …

In this section we further analyze the poles ofT1(k) in C1. We show that such poles cann
occur in certain regions inC1 determined in terms of the constants defined in~9.1!. When
P(x)<0, we show that such poles are confined to a certain interval on the positive imaginary
We analyze the change in the number of bound states whenP andQ are perturbed. In the generi
case we find that the number of bound states is unchanged under small perturbations ofP andQ;
in the exceptional case we find that the number of bound states is unchanged under small
bations ofP(x). WhenP(x)<0 we show that the number of bound states is independent ofP(x).
We also present a Levinson theorem relating the number of bound states to the change
argument ofT1(k).

Next we obtain some simple conditions onP(x) and Q(x) guaranteeing that there are n
bound states outside certaink-regions inC1 determined by the following parameters:

Pmin5ess inf
xPR

P~x!, Pmax5ess sup
xPR

P~x!, Qmin5ess inf
xPR

Q~x!. ~9.1!

Let us also defineb* 5Pmax/21APmax
2 /42Qmin. Note that if P,QPL1(R), then it follows that

Pmax>0 with the equality holding if and only ifP(x)<0, thatQmin<0 with the equality holding
if and only if Q(x)>0, and thatPmin<0 with the equality holding if and only ifP(x)>0.
Furthermore,b* >Pmax with the equality holding if and only ifQ(x)>0. Note also thatb* >0
with the equality holding if and only ifP(x)5Q(x)50; hence, the caseb* 50 is trivial.

Theorem 9.1: AssumeP,QPL1(R), P(x)Ó0, and Pmax is finite. Then forPmax/2<Im k
,b* the zeros of 1/T1(k) can only occur on the imaginary axis, and all such zeros are simple
in addition, Qmin is finite, then there are no zeros of 1/T1(k) in the region$kPC1:(Im k)2

2(Rek)22(Im k)Pmax>2Qmin%. Consequently, 1/T1(k) has no zeros inC1 satisfying Imk>b* .
Proof: From ~1.1!, after using~4.7!, we obtain

d

dx
$ f l

1~2k0, x! f l
18~k0, x!%5u f l

18~k0, x!u21@2k0
21 ik0P~x!1Q~x!#u f l

1~k0, x!u2. ~9.2!
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If k0PC1 is a zero of 1/T1(k), then by integrating~9.2! and using~4.7! and Theorem 2.1~i!, we
obtain

E
2`

`

dx u f l
18~k0, x!u25E

2`

`

dx @k0
22 ik0P~x!2Q~x!#u f l

1~k0, x!u2. ~9.3!

Letting k05a1 ib and separating the real and imaginary parts in~9.3!, we obtain

iaE
2`

`

dx @2b2P~x!#u f l
1~k0, x!u250, ~9.4!

E
2`

`

dx u f l
18~k0, x!u25E

2`

`

dx @a22b21bP~x!2Q~x!#u f l
1~k0, x!u2. ~9.5!

From ~9.4! we see that we must havea50 whenPmax<2b, and hence any zero of 1/T1(k) with
Im k>Pmax/2 can only occur on the positive imaginary axis. All such zeros are simple; other
a zero of order two or higher would imply~8.13! with n51, i.e., *2`

` dx @P(x)2
2 Im k0]ufl

1(k0,x)u250, which cannot happen if Imk0>Pmax/2. From ~9.5! we see that we canno
havea22b21bP(x)2Q(x)<0. Hence there are no zeros of 1/T1(k) in $a1 ibPC1:b22a2

2bPmax>2Qmin%. The analysis of the corresponding region in theab-plane indicates that ther
cannot be any zeros of 1/T1(k) on the imaginary axis when Imk>b* , and hence there cannot b
any zeros of 1/T1(k) either on or off the imaginary axis when Imk>b* . j

WhenP(x)<0, from Theorem 9.1 we obtain the following corollary.
Corollary 9.2: AssumeP(x)<0 andP,QPL1(R). Then, the poles ofT1(k) in C1 are all

purely imaginary and simple. In addition, assume thatQmin defined in~9.1! is finite; then there are
no zeros of 1/T1(k) in C1 for Im k>A2Qmin.

Theorem 9.3: AssumeQ(x)[0 andPPL1
1(R). If *2`

` dx P(x).2, then~1.1! has at least
one bound state atk5 ib for some positiveb. If *2`

` dx uP(x)u<2, then 1/T1(k) has no zeros in
C1.

Proof: When*2`
` dx P(x).2, from ~5.7! we see that 1/T1( ib) is negative atb50 and from

~6.1! we see that it is positive asb→1`. Being a real-valued, continuous function ofb,
1/T1( ib) must have a zero for some positiveb. Now let us prove the second statement. Assu
kPC1 corresponds to a bound state; we can transform~1.1! into

w~k, x!5E
2`

`

dy B~k;x,y!w~k,y!, ~9.6!

where we have defined

w~k, x!5uP~x!u1/2c1~k, x!, B~k;x,y!5 1
2e

ikux2yuuP~x!u1/2P~y!/uP~y!u1/2.

WhenPPL1(R) andkPC1, the integral operator in~9.6! is Hilbert–Schmidt with the Hilbert–
Schmidt norm

iB iHS
2 5 1

4E
2`

`

dxE
2`

`

dyuP~x!ue22ux2yuIm kuP~y!u,

and hence, ifkPC1 and*2`
` dx uP(x)u<2, we haveiB iHS,1. Thus the operator norm of tha

integral operator is also strictly less than 1 and hencew50, implying that there cannot be an
bound states of~1.1! for kPC1. j

It is already known9 that if QPL1
1(R), then the number of bound states for~2.6! is finite; let

us denote that number byN , and let ik1 ,...,ikN with 0,k1,...,kN denote the zeros o
1/T@0#(k) in C1. In the following, we generalize the second result of Theorem 9.3 to the
Q(x)Ó0.
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Theorem 9.4: Assume P,QPL1
1(R). The k-values in C1 satisfying *2`

` dx u ikP(x)
1Q(x)u<2uku cannot be zeros of 1/T1(k). Moreover, there are no zeros of 1/T1(k) in
C1\$ ik1 ,...,ikN % satisfyinguT@0#(k)uiPi1,1,2e2iQi1,1.

Proof: Let kPC1 correspond to a bound state of~1.1!. We can transform~1.1! into ~9.6! with

w~k, x!5u ikP~x!1Q~x!u1/2c1~k, x!,

B ~k;x,y!5
1

2ik
eikux2yuu ikP~x!1Q~x!u1/2

@ ikP~y!1Q~y!#

u ikP~y!1Q~y!u1/2.

A sufficient condition for the absence of bound states isiB iHS,1. Proceeding as in the proof o
Theorem 9.3, forkPC1 we obtainiB iHS,*2`

` dx u ikP(x)1Q(x)u/(2uku), and hence there ar
no zeros of 1/T1(k) at thek-values inC1 satisfying*2`

` dx u ikP(x)1Q(x)u<2uku. In the special
case P(x)[0, this implies that there are no bound states whenuku.*2`

` dx uQ(x)u/2. To
prove the second part of the theorem, we note that the kernel of the resolvent of the op
@2d2/dx21Q(x)2k2#21 is given by20

R~k;x,y!5
u~y2x! f r

@0#~k, x! f l
@0#~k,y!1u~x2y! f l

@0#~k, x! f r
@0#~k,y!

@ f l
@0#~k,• !; f r

@0#~k,• !#
, ~9.7!

where f l
@0#(k, x) and f r

@0#(k, x) are the Jost solutions of~2.6! andu(x) is the Heaviside function.
As seen from~2.8!, the Wronskian in~9.7! is equal to22ik/T@0#(k), and hence we get

i ikuP~x!u1/2R~k;x,y!P~y!/uP~y!u1/2iHS
2 5 1

4uT@0#~k!u2C~k!, ~9.8!

where we have defined

C~k!5E
2`

`

dx uP~x!uu f l
@0#~k, x!u2E

2`

x

dy u f r
@0#~k,y!u2uP~y!u

1E
2`

`

dx uP~x!uu f r
@0#~k, x!u2E

x

`

dy u f l
@0#~k,y!u2uP~y!u. ~9.9!

Using ~2.1! with P(x)50, we deduce that

u f l
@0#~k, x!u<~11max$0,2x%!e2x Im ke*x

`dy ~11uyu!uQ~y!u, kPC1, ~9.10!

u f r
@0#~k, x!u<~11max$0, x%!ex Im ke*2`

x dy ~11uyu!uQ~y!u, kPC1. ~9.11!

In ~9.9!, using ~9.10!, ~9.11!, and the estimates 11max$0,6x%<11uxu and e72(x2y)Im k<1 for
6(x2y)>0, we obtainuC(k)u<iPi1,1

2 e2iQi1,1. Hence the Hilbert–Schmidt norm on the left-ha
side of~9.8! is strictly less than 1, provideduT@0#(k)u,2e2iQi1,1/iPi1,1. Under this condition on
k, there is no bound state corresponding to thatkPC1. j

Let us denote the number of bound states of~1.1!, i.e., the number of zeros of 1/T1(k) in C1

~including multiplicities! by N(P,Q). In the next two propositions we obtain some stability resu
for N(P,Q) under certain perturbations ofP and Q. As in Sec. VII, we letTj

1(k) denote the
transmission coefficient corresponding to~7.1! for j 51,2.

Proposition 9.5:AssumeP1 ,P2PL1(R), Q1 ,Q2PL1
1(R), 1/T1

1(k) does not have any rea
zeros, andQ1(x) is a generic potential. IfiP12P2i11iQ12Q2i1,1 is small, i.e., if ~9.13! is
satisfied, then
~a! 1/T2

1(k) does not have any real zeros.
~b! N(P2 ,Q2)5N(P1 ,Q1).
~c! If all zeros of 1/T1

1(k) are simple and purely imaginary, so are those of 1/T2
1(k).

Proof: For a.0 let Ga be the positively oriented contour consisting of the interval@2a,a#
and the semicircle$kPC1:uku5a%, and let us choosea large enough so that all zeros of 1/T1

1(k)
in C1 have an absolute value less thana. Putting F j (k)5k/@(k1 i )Tj

1(k)# for j 51,2, from
Propositions 7.1 and 7.2 we get
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UF1~k!2F2~k!

F1~k!
U< C

uF1~k!u ~ iP12P2i11iQ12Q2i1,1!. ~9.12!

If 1/T1
1(k) does not have any real zeros, then in the generic caseF1(k) cannot have any real zeros

thus, F1(k) does not vanish onGa . Moreover, by Proposition 4.1,F1(k) is continuous and
bounded inC1. Hence minkPGa

uF1(k)u.0. Now choosing

iP12P2i11iQ12Q2i1,1,
1

C
min
kPGa

U k

~k1 i !T1
1~k!

U, ~9.13!

from ~9.12! we obtain

UF1~k!2F2~k!

F1~k!
U,1, kPGa . ~9.14!

Hence from~9.14! we seeF2(k) cannot vanish onGa , which implies~a!. Part~b! follows from
~9.14! with the use of Rouche´’s theorem. Part~c! follows by replacingGa with the union of
N(P1 ,Q1) small, positively oriented circles centered at the zeros of 1/T1

1(k) and by applying
Rouché’s theorem. j

Proposition 9.6:AssumeQ15Q25Q in ~7.1!, 1/T1
1(k) does not have any real zeros,Q(x) is

an exceptional potential, andP1 ,P2 ,QPL1
1(R). If iP12P2i1,1 is small, i.e., if~9.15! is satisfied,

then we have
~a! 1/T2

1(k) does not have any real zeros.
~b! N(P2 ,Q)5N(P1 ,Q).
~c! If all zeros of 1/T1

1(k) are simple and purely imaginary, so are those of 1/T2
1(k).

Proof: We will proceed as in the proof of Proposition 9.5. Let us chooseGa as in that proof
but defineF j (k)51/Tj

1(k) for j 51,2, instead. Note thatF1(k) is bounded, continuous, an
nonzero onGa . From ~7.13! we have

UF1~k!2F2~k!

F1~k!
U<CiP12P2i1,1.

From ~9.8! we get

UF1~k!2F2~k!

F1~k!
U< C

uF1~k!u
iP12P2i1,1,

and hence by choosing

iP12P2i1,1,
1

C
min
kPGa

U 1

T1
1~k!

U, ~9.15!

and proceeding as in the proof of Proposition 9.5, we complete the proof. j

Theorem 9.7:AssumeP,QPL1(R) andP(x)<0. Then, eitherN(P,Q) andN(0,Q) are both
infinite, or they are both finite andN(P,Q)5N(0,Q). Thus the number of bound states of~1.1!
coincides with the number of bound states of~2.6!.

Proof: SinceP(x)<0, by Corollary 9.2 we know that the bound states of~1.1! can only occur
when k is on the positive imaginary axis. Let us write~1.1! with k5 ib as two simultaneous
equations:

2c91V~b, x!c5E~b!c, ~9.16!

E~b!52b2, ~9.17!
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whereb is considered to be a parameter in the potentialV(b, x)5Q(x)2bP(x) of the Schro¨-
dinger equation~9.16!, andE(b) denotes the corresponding energy for eachb. Each bound-state
energy2k j

2 of ~2.6! gives rise to an eigenvalue branchEj (b). From ~9.16! we have

E8~b!5
^c,2Pc&

^c,c&
, ~9.18!

where ^•,•& denotes the usual scalar product onL2(R). If P(x)<0, from ~9.18! we see that
E8(b)>0 and hence eachEj (b) is a nondecreasing function ofb. Therefore forb>0, the graph
of Ej (b) must intersect the parabolaE52b2 at exactly one point, say (b j ,2b j

2), and each
Ej (b) gives rise to exactly one solution of~9.17!. The numberN(P,Q) is equal to the number o
intersections of the eigenvalue branchesEj (b) with the parabola given in~9.17! for j >1. Since
each of theN(0,Q) branches is responsible for exactly one intersection, we conclude
N(P,Q)5N(0,Q). Note that ifQPL1(R) but Q¹L1

1(R), it is possible thatN(0,Q)51`, but
then we also haveN(P,Q)51`. j

If P,QPL1(R) andP(x)<0, then eitherN(P,Q)51`, in which case the set of bound-sta
energies of~1.1! consists of a strictly decreasing sequence of negative numbers converging t
N(P,Q) is finite and equal toN , in which case we letk5 ib j for j 51,...,N , with 0,b1

,...,bN denote the zeros of 1/T1(k) in C1. Since the conditionQPL1
1(R) guarantees the

finiteness ofN(0,Q), from Theorem 9.1 we obtain the following:
Corollary 9.8: AssumeP(x)<0, Q(x)>0, PPL1(R), and QPL1

1(R). Then, there are no
zeros of 1/T1(k) in C1.

In the next theorem, whenP(x)<0, using the constantPmin defined in~9.1!, we obtain some
upper and lower bounds on each bound-state energy of~1.1!.

Theorem 9.9: AssumeN(0,Q) is finite and nonzero,Pmin is finite, P(x)<0, and P,Q
PL1(R); let k5 ik j correspond to the bound states of~2.6! for j 51,...,N . Then, the zeros of
1/T1(k) in C1 occur at k5 ib j satisfying b* <b j<k j for j 51,...,N , where b* 5Pmin/2
1APmin

2 /41k1
2. In particular,b1>b* andbN <kN , with the equalities holding if and only if

P(x)50.
Proof: At a bound state withk5 ib j of ~1.1!, replacingk0 in ~9.5! by 01 ib j , we get

E
2`

`

dx fl
18~ ib j , x!25E

2`

`

dx @2b j
21b j P~x!2Q~x!# f l

1~ ib j , x!2. ~9.19!

On the other hand, since2kN
2 is the lowest bound-state energy for~2.6!, we have

2kN
2 <

*2`
` dx @ f l

18~ ib j , x!21Q~x! f l
1~ ib j , x!2#

*2`
` dx fl

1~ ib j , x!2 , ~9.20!

with the equality holding if and only iff l
@0#( ikN , x) and f l

1( ib j , x) are linearly dependent. From
~9.19! and ~9.20! we obtain

2kN
2 <2b j

21b j

*2`
` dx P~x! f l

1~ ib j , x!2

*2`
` dx fl

1~ ib j , x!2 . ~9.21!

SinceP(x)<0, from ~9.21! we see thatb j<kN with the equality holding if and only ifP(x)
50 andj 5N . Thusb jP(0,kN # for j 51,...,N . Now let us improve the bounds onb j . From
the proof of Theorem 9.7, recall that each eigenvalue branchEj (b) gives rise to exactly one
solution of~9.17! starting with2k j

2 at b50 and ending with2b j
2 at b5b j . SinceEj (b) is an

increasing function ofb, we get2k j
25Ej (0)<Ej (b j )52b j

2, and henceb j<k j . Now consider
E1(b), the eigenvalue branch corresponding tob1 . From ~9.18! using Pmin<P(x), we obtain 0
<E18(b)<2Pmin ; more specifically, 0,E18(b),2Pmin unlessP(x)50. SinceE1(0)52k1

2 and
E1(b) is nondecreasing, we getE1(b)<2bPmin2k1

2. Thus from the inequality2b1
2

<2b1Pmin2k1
2, we getb1>b* . Note that the equality inb1>b* holds if and only if P(x)

50 becauseb* >k1 with the equality holding if and only ifP(x)>0. j
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From the proof of Theorem 9.9 we get the following corollary that holds even when~2.6! has
infinitely many bound states.

Corollary 9.10:AssumeP,QPL1(R) andP(x)<0, and let$E j% and$E j
@0#% for j >1 denote

the bound-state energies of~1.1! and ~2.6!, respectively, ordered such thatE j,E j 11 and E j
@0#

,E j 11
@0# . Then we haveE j

@0#<E j,0 for j >1, and hence the bound-state energies of~1.1! cannot
occur below the lowest bound-state energy of~2.6!.

Recall that the Levinson theorem21 relates the number of bound states for the usual Sc¨-
dinger equation to the change in the phase of the transmission coefficient. Next we genera
Levinson theorem to~1.1!.

Theorem 9.11:Assume thatPPL1(R) in the generic case andPPL1
1(R) in the exceptional

case and thatQPL1
1(R), and suppose 1/T1(k) does not have any real zeros. Then the numbe

bound states of~1.1! is given by

arg T1~01 !5pFN~P,Q!2
d

2G , ~9.22!

where d50 in the exceptional case andd51 in the generic case, and argT1(k) denotes the
continuous branch of the argument ofT1(k) normalized such that argT1(1`)50.

Proof: For b.a.0, let Ga,b be the positively oriented contour consisting of the circular a
$kPC1:uku5a% and$kPC1:uku5b% and the segments@2b,2a# and@a,b#. Let us choosea and
b so that all zeros of 1/T1(k) in C1 are enclosed byGa,b . By the argument principle we have

N~P,Q!52
1

2p i EGa,b

dk
Ṫ1~k!

T1~k!
52

1

2p
DGa,b

@arg T1~k!#, ~9.23!

whereDGa,b
@argT1(k)# indicates the change in the argument ofT1(k) when Ga,b is traversed

once. This change is independent ofa and b, and hence we evaluate it by lettinga→0 andb
→1`. By Theorem 6.1 the contribution to that change from the large semicircle$kPC1:uk
u5b% vanishes asb→1`. In view of ~5.2! and~5.3!, we see that the contribution from the sma
semicircle
$kPC1:uku5a% in the limit a→0 is equal to 0 in the exceptional case and2p in the generic
case. Thus the contribution from the interval (0,1`) is given by argT1(1`)2argT1(01)
52argT1(01). By the first equality in~4.10!, the contribution from the interval (2`,0) is the
same. Hence, the right-hand side in~9.23! is equal to (1/p)argT1(01) in the exceptional case an
(1/2)1(1/p)argT1(01) in the generic case, which gives us~9.22!. j

Finally, let us show that in the special case whenP andQ have support in a half-line, we ca
relate the poles of the transmission coefficient to the poles of a reflection coefficient. Since
is no loss of generality in choosing our half-lines asR15(0,1`) or R25(2`,0) instead of
(a,1`) or (2`,b), respectively, for some constantsa and b, we will state the following
proposition usingR6.

Proposition 9.12:AssumeP(x)5Q(x)50 for xPR2 and P,QPL1(R1). Then L1(k) is
meromorphic inC1 having poles coinciding with the poles ofT1(k). Furthermore, none of the
zeros ofL1(k) coincide with the poles ofT1(k) in C1. These assertions remain valid ifR2 and
L1(k) are replaced byR1 andR1(k), respectively.

Proof: If P(x)5Q(x)50 for xPR2, from Theorem 2.1~i!, we see thatf l
1(k,0) and

f l
18(k,0) are analytic inC1. Hence using~1.3! we can conclude thatL1(k)/T1(k) is analytic in

C1, allowing us to conclude that the poles ofL1(k) and T1(k) must coincide inC1. Since
f l

1(k,0) and f l
18(k,0) cannot vanish simultaneously, it follows that 1/T1(k) and L1(k)/T1(k)

cannot vanish simultaneously inC1, and hence the zeros ofL1(k) and the poles ofT1(k) cannot
coincide inC1. The proof whenP andQ have support inR2 is obtained in a similar manner.j

X. EIGENVALUE CURVES AND ZEROS OF JOST SOLUTIONS

In this section we study the zeros of the Jost solutions of~1.1! for a fixedkPC1 and analyze
the number of such zeros in relation to the bound states of~1.1! and ~2.6!. As in Sec. IX, we let
N(P,Q) denote the number of bound states of~1.1!. WhenP(x)<0 we show that the number o
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e
etween

o show

ns of
the
e

f

sume

terval

1978 J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee

Downloaded 
zeros of the Jost solutions of~1.1! is related toN(P,Q) in a simple manner, and we present som
examples showing that this relation does not hold in general. We establish the connection b
the results of Sec. VIII on Jordan chains and certain zeros of the Jost solutions of~1.1!. This
connection uses the eigenvalue branches introduced in the proof of Theorem 9.7. We als
that the number of bound states of~1.1! with real energies is greater than or equal toN(0,Q).

In the first proposition, we collect some results about the oscillation properties of solutio
generalized Schro¨dinger equations related by inequalities involving the coefficients. Although
methods for proving such results are familiar,20,22 we include a proof for the convenience of th
reader.

Consider the pair of generalized Schro¨dinger equations

x j9~m, x!2m2x j~m, x!5Vj~m, x!x j~m, x!, m>0, j 51,2. ~10.1!

Note that if we letVj (m, x)52mP(x)1Q(x) in ~10.1!, we get~1.1! for k5 im.
Proposition 10.1: Assume Vj (m,•)PL1(R) if m.0, Vj (0,•)PL1

1(R), and V1(m2 , x)<
V2(m1 , x) if 0<m1<m2 . Let x1(m1 , x) andx2(m2 , x) denote two nontrivial solutions of~10.1!
with the corresponding coefficientsV1(m1 , x) andV2(m2 , x), respectively. Then:

~i! Supposex2(m2, x) has two successive zerosa and b with a,b. If 0<m1,m2 , then
x1(m1, x) has at least one zero in (a,b). If 0<m15m2 andV1(m1, x)ÓV2(m1, x) on (a,b), then
x1(m1, x) has at least one zero in (a,b). If 0<m15m2 , V1(m1, x)[V2(m1, x) on (a,b), and
x1(m1, x) andx2(m1, x) are linearly independent in (a,b), thenx1(m1, x) has exactly one zero in
(a,b).

~ii ! Supposex2(m2, x) remains bounded asx→1`. Let a denote the largest zero o
x2(m2, x), and setb51`. Then the assertions of~i! remain true if we replace the interval (a,b)
by (a,1`).

~iii ! If 0<m1<m2 , x2(m2, x) is bounded asx→1`, andx1(m1, x) has no zeros inR, then
x2(m2, x) has no zeros inR either.

~iv! If x2(m2, x) is bounded asx→2` and a is the smallest zero ofx2(m2, x), then the
assertion of~iii ! holds, and the assertions in~i! remain true if we replace the interval (a,b) by
(2`,a).

Proof: We will omit the proof of~i! because on a finite interval such results are known~e.g.,
Theorem 1.1 on p. 208 of Ref. 20!. Moreover, our proof of~ii ! is easily modified to prove~i!. The
proof of ~iv! is analogous to the proofs of~ii ! and~iii !, and hence we will only prove~ii ! and~iii !.

~ii ! The proof can be given using contradiction. Without loss of generality we may as
thatx1(m1, x) andx2(m2, x) are strictly positive in (a,1`). Whenb.a, wherea is the largest
zero ofx2(m2, x), from ~10.1! we get

x2~m2 ,b!x18~m1 ,b!2x28~m2 ,b!x1~m1 ,b!1x28~m2 ,a!x1~m1 ,a!

5E
a

b

dx @V1~m1 ,x!2V2~m2 ,x!1m1
22m2

2#x1~m1 ,x!x2~m2 ,x!. ~10.2!

Note that, by the asymptotic properties of the solutions and their assumed positivity in the in
(a,1`), we have form2.0 and somec2.0

x2~m2, x!5c2e2m2x1o~e2m2x! x28~m2, x!52c2m2e2m2x1o~e2m2x!, x→1`.
~10.3!

Furthermore, ifx1(m1, x) is unbounded asx→1`, then for somec1.0 we have

x1~m1, x!5c1em1x1o~em1x!, x18~m1, x!5c1m1em1x1o~em1x!, x→1`. ~10.4!

If m150 andx1(0, x) is unbounded asx→1`, then for somec̃1.0

x1~0, x!5 c̃1x1o~x!, x18~0, x!5 c̃11o~1!, x→1`. ~10.5!

If x2(0, x) is bounded asx→1`, then for somec̃2.0 we have
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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x2~0, x!5 c̃21o~1!, x28~0, x!5o~1/x!, x→1`. ~10.6!

Using ~10.3!–~10.6! we will let b→1` in ~10.2!. When 0<m1<m2 , the limit asb→1` of the
right-hand side of~10.2! exists and is nonpositive; it is equal to zero precisely whenm15m2 and
V1(m1, x )[V(m2, x ) on (a,1`). If 0<m1,m2, the limit of the left-hand side of~10.2! is equal
to x28(m2, a)x1(m1, a), which is nonnegative. Hence we have a contradiction, and thusx1(m1, x )
must have a zero in (a,1`). If 0,m15m2 andx1(m1, x ) is unbounded, then the limit on th
left-hand side of~10.2! is equal to 2c1c2m11x28(m1, a)x1(m1, a), which is strictly positive; the
right-hand side is nonpositive and so again we have a contradiction. If 0,m15m2 andx1(m1, x )
is bounded, then the limit of the left-hand side is equal tox28(m2, a)x1(m1, a), which is nonneg-
ative. If alsoV1(m1, x )ÓV2(m2, x ) on (a,1`), then the right-hand side is strictly negative a
we have a contradiction. IfV1(m1, x )[V2(m2, x ) on (a,1`), then x1(m1, a).0 due to the
linear independence ofx1(m1, x) and x2(m2, x ), and so the left-hand side of~10.2! is strictly
positive while its right-hand side is zero. In this case, by~i!, there can only be one zero o
x1(m1, x ) in (a,1`). If 05m15m2 and x1(0,x) is unbounded, then because of~10.6! the
left-hand side of~10.2! approachesc̃1c̃21x28(0,a)x1(0,a), which is again strictly positive. If
m25m150 and x1(0, x) is bounded, then the limit of the left-hand side of~10.2! is
x28(0, a)x1(0, a), which is nonnegative. IfV1(0, x)ÓV2(0, x) on (a,1`), then the right-hand
side of~10.2! is strictly negative, while ifV1(0, x)[V2(0, x) on (a,1`), then its right-hand side
is zero and its left-hand side is strictly positive due to the linear independence ofx1(0, x) and
x2(0,x). In both cases we arrive at a contradiction. As in~i!, if V1(0, x)[V2(0, x) on
(a,1`), we conclude that there is exactly one zero ofx1(0, x) in (a,1`).

~iii ! Supposex2(m2, x ) does have some zeros, the largest of which isa. Then, under the
assumptions made in~i! and ~ii !, it follows that x1(m1, x ) has a zero to the right ofa, contra-
dicting the assumptions of~iii !. The only situation not covered by~i! and ~ii ! is whenm25m1,
V1(m1 , x)[V2(m2 , x) on (a,1`), and x1(m1 , x) and x2(m1 , x) are linearly dependent in
(a,1`), but thenx2(m1 ,a)50 impliesx1(m1 ,a)50, which is again a contradiction. j

From Proposition 10.1 we obtain the following:
Corollary 10.2: AssumeP,QPL1(R) and letb.0. Suppose thatf l

1( ib, x) and f r
1( ib, x)

are linearly independent. Thenf l
1( ib, x) and f r

1( ib, x) have the same number of zeros and th
zeros are separated, i.e., between two successive zeros off l

1( ib, x) there is a zero off r
1( ib, x)

and vice versa. Moreover, to the right of the largest zero off l
1( ib, x) there is a zero off r

1( ib, x),
and to the left of the smallest zero off r

1( ib, x) there is a zero off l
1( ib, x).

Our next result concerns the zeros of the Jost solutions of~2.6!. Since some theorems of thi
type have already been proved elsewhere~see, e.g., Theorem 14.10 of Ref. 22 or Theorem XII
on p. 90 of Ref. 23!, we only comment on certain details that may not be obvious from th
references. Recall thatN(0,Q) denotes the number of bound states of~2.6!.

Proposition 10.3:~i! SupposeQPL1(R) and assumeb.0. Then the number of zeros o
f l

@0#( ib, x) is equal to the number of bound states of~2.6! with energies contained in the interva
(2`,2b2).

~ii ! Suppose further thatQPL1
1(R). Then the number of zeros off l

@0#(0, x) is equal to
N(0,Q).

Proof: ~i! Since we only assumeQPL1(R), there may be infinitely many bound states
~2.6! with energies accumulating at zero. All such energies are negative, and let us denote th
2g j

2 with g j.g j 11.0 for j >1. It is known ~Theorem 14.10 of Ref. 22! that f l
@0#( ig j , x) has

exactly (j 21) zeros. Hence we only need to consider the zeros off l
@0#( ib, x) whenb is not equal

to any g j . If b.g1 , then from Proposition 10.1~iii ! with V15V25Q, m15g1 , m25b,
x1(m1, x)5 f l

@0#( ig1, x), andx2(m2, x)5 f l
@0#( ib, x), it follows that f l

@0#( ib, x) has no zeros. If
bP(g j 11 ,g j ), then, by Proposition 10.1~i! and ~ii ! with m15b and m25g j , we observe that
f l

@0#( ib, x) has at leastj zeros. On the other hand, using Proposition 10.1, we can conclude
f l

@0#( ib, x) cannot have more thanj zeros because the number of its zeros is nondecreasingb
decreases andf l

@0#( ig j 11 ,x) has exactlyj zeros. Thusf l
@0#( ib, x) has exactlyj zeros whenb

P(g j 11 ,g j ). This proves~i! whenN(0,Q)51` because the bound states of~2.6! can only occur
whenk is on the positive imaginary axis. IfN(0,Q) is finite and is denoted byN , then we must
still consider the case whenbP(0,gN ). Then using Lemma 1 on p. 91 of Ref. 23 we conclu
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



e

ost

o the

d

t be
. From

.4.

eros of

l

the

cave

er

1980 J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee

Downloaded 
that f l
@0#( ib, x) has exactlyN zeros because if it had more thanN zeros one could find a

subspace of dimension at leastN 11 on which the expectation value of (2d2/dx21Q2bP) is
less than or equal to2b2, and this would imply the existence of at least (N 11) eigenvalues less
than or equal to2b2.

~ii ! In this case the conditionQPL1
1(R) guarantees thatN(0,Q) is finite. It only remains to

consider the caseb50. Note thatf l
@0#(0, x) cannot have more thanN zeros; this is becaus

f l
@0#( ib, x) has exactlyN zeros whenb is sufficiently small and by~2.5! we see that asb→0 we

have f l
@0#( ib, x)→ f l

@0#(0, x) uniformly on compactx-intervals. On the other hand, in~10.1! by
setting m150, m25b, V1(m1, x)5Q(x), V2(m2, x)5Q(x)2bP(x), V1(m1, x)5Q(x), and
x2(m2 , x)5 f l

@0#(b, x), and using Proposition 10.1, we see thatf l
@0#(0, x) has at leastN zeros.

Hencef l
@0#(0,x) must have exactlyN zeros. j

If QPL1
1(R), thenN(0,Q) is finite and as in Sec. IX we letk5 ik j for j 51,...,N denote the

bound states of~2.6!. From Theorems 9.7 and 9.9, whenPPL1(R), QPL1
1(R), andP(x)<0, we

already know that the bound states of~1.1! occur atk5 ib j satisfyingb j<k j for j 51,...,N . In
the next theorem, we extend Proposition 10.3 to~1.1! and analyze the number of zeros of the J
solutions of~1.1! whenk is on the positive imaginary axis.

Theorem 10.4:Assume thatPPL1(R), QPL1
1(R), andP(x)<0. Then, for eachb>0, the

functionsf l
1( ib, x) and f r

1( ib, x) have the same number of zeros, and this number is equal t
number of bound states of~1.1! with energies contained in the interval (2`,2b2).

Proof: From Proposition 10.1~i! and~ii !, we see thatf l
1( ib, x) and f r

1( ib, x) have the same
number of zeros. SinceP(x)<0, from the proof of Theorem 9.7 it follows that, for any fixe
b.0, the number of eigenvalues of the operator (2d2/dx21Q2bP) below2b2 is equal to the
number ofEj (b)-values that lie below2b2. Note that ifbP@b j ,b j 11) for j 51,...,N 21, then
the (N 2 j ) valuesEN (b),EN 21(b),...,Ej 11(b) lie strictly below2b2; if bP@bN ,1`) then
there are no eigenvalues below2b2, and if bP@0,b1) then exactlyN eigenvalues lie below
2b2. Using Proposition 10.3 when the potentialQ(x) in ~2.6! is replaced byQ(x)2bP(x), we
conclude that f l

1( ib, x) has no zeros forbP@bN ,1`), N zeros for bP@0,b1), and
(N 2 j ) zeros forbP@b j ,b j 11) for j 51,...,N 21. j

If we weaken the conditionP(x)<0 in Theorem 10.4, the number of bound states may no
easily related to the number of zeros of the Jost solutions, as we will see in Example 11.2
Proposition 10.1 and Theorem 10.4 we have the following:

Corollary 10.5: Assume thatP,QPL1(R) and thatP(x)<0. The zeros off l
1( ib j , x) sepa-

rate the zeros off l
1( ib j 11 , x), i.e., between two consecutive zeros off l

1( ib j , x) there is exactly
one zero off l

1( ib j 11 , x), wherek5 ib j for j 51,...,N correspond to the bound states of~1.1!.
Similarly, the zeros off r

1( ib j , x) separate the zeros off r
1( ib j 11 , x).

When we no longer haveP(x)<0, then there may be bound states of~1.1! with complex
energies andN(P,Q) may be larger thanN(0,Q). We refer the reader to Examples 11.2 and 11
In the next theorem, whenPPL1(R) andQPL1

1(R), we analyze the bound states of~1.1! when
k is on the positive imaginary axis, establish the connection between Theorem 8.4 and the z
f r

1( ib, x), and also consider multiple zeros of 1/T1(k) on the positive imaginary axis.
Theorem 10.6:SupposePPL1(R) andQPL1

1(R). Then:
~i! If ~2.6! hasN bound states withN >1, then~1.1! has at leastN bound states with rea

~negative! energies.
~ii ! 1/T1( ib) has a zero of orderm at some positiveb0 if and only if the functionE0(b)

1b2 has a zero of orderm at b0 , whereE0(b) denotes the unique eigenvalue branch of
operator (2d2/dx21Q2bP) satisfying E0(b)→2b0

2 as b→b0 . If m51, then the graph of
E0(b) and the graph of the parabolaE52b2 intersect with different slopes atb0 . If m>2 and
m is even, then the graphs touch atb0 but do not cross each other. Ifm>3 andm is odd, then the
graphs cross smoothly such that at the point of intersection they have the same slope.

~iii ! The lowest eigenvalue branchEN (b) satisfiesEN9 (b),0 for b.0 unlessP(x)[0, in
which caseEN (b) is a constant. Hence the graph of the lowest eigenvalue branch is con
down if P(x)Ó0.

~iv! The number of zeros off l
1( ib, x) behaves in the following manner asb is increased from

b02e to b01e when e is sufficiently small: Ifm is even, then the number of zeros is eith
constant throughout the interval (b02e,b01e) or it is constant in (b02e,b0)ø(b0 ,b01e) but
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one less atb0 . If m is odd, then the number of zeros either increases or decreases by onb
crossesb0 . The number of zeros off l

1( ib, x) can only change atb-values corresponding to
bound states of~1.1!.

Proof: ~i! Since we are only interested in the bound states corresponding tok5 ib for
b.0, we first derive a lower bound forEN (b), which will show thatEN (b)5o(b2) as
b→1`. Let us indicate the Fourier transform by a caret:

ĉ~q!5
1

A2p
E

2`

`

dx eiqxc~x!, c~x!5
1

A2p
E

2`

`

dq e2 iqxĉ~q!.

Then, lettingi•i2 denote the norm onL2(R), for a.0 we get~cf. Theorem IX.28 of Ref. 24!

uc~x!u<
1

A2p
E

2`

`

dq uĉ~q!u<
1

A2a
F E

2`

`

dq ~q21a2!uĉ~q!u2G1/2

5
1

A2a
~ ic8i2

21a2ici2
2!1/2,

~10.7!

where we have used the Schwarz inequality,ici25iĉi2 , *2`
` dq/(a21q2)5p/a, and ĉ8

52 iqĉ. Next we use~10.7! to estimate the quadratic forms^Qc,c& and^Pc,c&. From ~10.7!
we obtain

E
2`

`

dx uQ~x!uuc~x!u2<
1

2a
~ ic8i2

21a2ici2
2!S E

2`

`

dxuQ~x!u D . ~10.8!

If P(x)[0, then~1.1! and ~2.6! become identical, and in this trivial case both equations h
exactly N bound states. Thus there is no loss of generality in assumingP(x)Ó0. In order to
estimate the integral*2`

` dx uP(x)uuc(x)u2, we split it into two parts: one over the regio
$x:uP(x)u.M % and the other over the region$x:uP(x)u<M %, where the constantM>0 is arbi-
trary for the moment but will be fixed later. Then, for anyb.0, ~10.7! implies

E
2`

`

dx uP~x!uuc~x!u2<
1

2b
~ ic8i2

21b2ici2
2!S E

$uP~x!u.M %
dx uP~x!u D 1M ici2

2. ~10.9!

Combining~10.8! and ~10.9! we get

^2c91Qc2bPc,c&>J1ic8i2
22J2ici2

2,

where

J1512
1

2a E
2`

`

dx uQ~x!u2
b

2b E
$uP~x!u.M %

dx uP~x!u,

J25
a

2 E
2`

`

dx uQ~x!u1
bb

2 E
$uP~x!u.M %

dx uP~x!u1bM .

We now set

a5E
2`

`

dx uQ~x!u, b5bE
$uP~x!u.M %

dx uP~x!u,

and assume thatc is a normalized eigenfunction corresponding to the eigenvalueEN (b). Then
the left-hand side of~10.9! is equal toEN (b) and hence

EN ~b!>2
1

2 S E
2`

`

dx uQ~x!u D 2

2
b2

2 S E
$uP~x!u.M %

dx uP~x!u D 2

2bM . ~10.10!
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Since by choosingM large enough we can make the second term on the right-hand side of~10.10!
as small as we please, it follows thatEN (b)5o(b2) as b→1`. Thus EN (b).2b2 for b
sufficiently large, whileEN (0)52kN

2 ,0. Hence by the intermediate value theorem, the eq
tion EN (b)52b2 has at least one solution. A similar argument shows that each of the rema
eigenvalue branchesEj (b) for j 51,...,N 21 must intersect the parabolaE52b2 at least once.
Since each intersection increases the number of negative-energy bound states of~1.1!, the proof of
~i! is complete. Note that if an eigenvalue branchEj (b) touches or intersects the parabo
E52b2 at other points, such additional points are also responsible for additional negative-e
bound states of~1.1!. Moreover, there may be other eigenvalue branchesE(b) starting at (b̃,0)
for someb̃.0 and intersecting or touching the parabolaE52b2 at one or more points; again
each of such points also increases the number of negative-energy bound states of~1.1!.

~ii ! If P(x)[0, each eigenvalue branchE0(b) becomes the horizontal lineE0(b)52b0
2 for

b>0, and henceE09(b)50 for b.0. Thus in the rest of the analysis we can assume thatP(x)Ó0.
Associated with the eigenvalueE0(b) there exists25 a real-valued, analytic eigenvectorc(b, x).
Nearb5b0 we have the convergent expansions

E0~b!5 (
n50

`

an~b2b0!n, c~b, x!5 (
n50

`

cn~x!~b2b0!n, ~10.11!

with cnPL2(R) for n>0. Substituting~10.11! in ~1.1! we get the following set of equations~see
pp. 333 and 334 of Ref. 26! for n>0:

cn9~x!2b0
2cn~x!1a1cn21~x!1a2cn22~x!5@2b0P~x!1Q~x!#cn~x!2P~x!cn~x!

2(
j 53

n

ajcn2 j~x!, ~10.12!

where it is assumed thata2n5c2n(x)50 if n>1. From~9.17! and ~9.18! we see that

a05E0~b0!, a152
1

ic0i2
2 E

2`

`

dx P~x!c0~x!2. ~10.13!

We may choosec0(x)5 f l
1( ib0 ,x). It suffices to prove that 1/T1( ib) has a zero of order at leas

m at b0 if and only if E0(b)1b2 has a zero of order at leastm at b0 . From Proposition 8.1 we
know that this is true whenm51. If b0 is a zero ofE0(b)1b2 of orderm for somem>2, then
the coefficientsan in ~10.3! are determined forn50,1,...,m21 by expandingE0(b)1b2 about
b0 . Thus form52 we geta052b0

2, a1522b0 ; for m53 we geta052b0
2, a1522b0 , a2

521; for m>4 we geta052b0
2, a1522b0 , a2521, anda35•••5am2150. Then, compar-

ing ~10.12! and~8.2! and using the fact that the functionsgl ,n
1 ( ib0 ,x) are uniquely determined a

solutions of~8.2! by the requirement thatgl ,n
1 ( ib0 ,•)PL2(R), we obtain

cn~x!5 i ngl ,n
1 ~ ib0 , x!, n50,...,m21. ~10.14!

Thus, by Theorem 8.4, we see that 1/T1( ib) has a zero of order at leastm at b0 . Conversely,
suppose 1/T1( ib) has a zero of order at leastm at b0 . From ~10.12! one can derive~see p. 334
of Ref. 26! the following recursion formula for the coefficientsan :

an52
1

ic0i2
2 E

2`

`

dx c0~x!S P~x!cn21~x!1 (
j 51

n21

ajcn2 j~x!D , n>2. ~10.15!

Now assumem>2. Since the functions$gl ,n
1 ( ib0 ,•)%n50

m21 form a Jordan chain of lengthm, using
~8.13! with n51 and~10.13! we geta1522b0 . HenceE0(b)1b2 has a zero of order at least
at b0 . If m>3, then using~8.13! with n52, ~10.14!, and~10.15! we obtaina2521 and this, in
turn, implies thatE0(b)1b2 has a zero of order at least 3 atb0 . If m>4, then~8.13! and~10.15!
give a350 and thenaj50 for all j 53,...,m21. As a result,E0(b)1b2 has a zero of order a
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leastm at b0 . If m is even, thenE0(b) touches the parabolaE52b2 at b0 but stays either above
or below the parabola; ifm is odd, thenE0(b) intersects the parabola by crossing from one s
to the other.

~iii ! For the lowest eigenvalue, we need to show thata2 in ~10.11! is negative for any
b0.0. We have~see p. 334 of Ref. 26!

c1~x!52c0~x! E
x0

x dt

c0~ t !2 E
2`

t

ds c0~s!@P~s!c0~s!1a1c0~s!#, ~10.16!

where the constantx0 is arbitrary; however, since changingx0 amounts to adding a constan
multiple of c0(x) to c1(x), with the help of~10.6! one can show that the value ofan given in
~10.15! is independent ofx0 . Using~10.16! in ~10.15! with n52 and the positivity ofc0(x), after
performing an integration by parts, we get

a252
1

ic0i2
2 E

2`

` dx

c0~x!2 S E
2`

x

dt c0~ t !2@P~ t !1a1# D 2

,0.

Thusa2,0 in ~10.11! for any b0.0, and hence we haveEN9 (b),0 for anyb.0.
~iv! Let us consider the number of zeros off l

1( ib, x) in relation to the behavior of the
eigenvalue branchE0(b) nearb0 . From Proposition 10.3~i!, whenQ(x) in ~2.6! is replaced by
Q(x)2bP(x), we know that the number of zeros off l

1( ib, x) is equal to the number of eigen
value branches lying below2b2. Let I b0

denote the interval (b02e,b01e) and letJb0
denote

(b02e,b0)ø(b0 ,b01e) for sufficiently smalle.0, and let us consider the number of eige
value branches below2b2 when bPI b0

. If m is even, thenE0(b) touches the parabolaE
52b2 at b0 but stays either above or below that parabola; in the former caseE0(b).2b2 for
bPJb0

and hence the number of zeros off l
1( ib, x) remains unchanged forbPI b0

; in the latter

caseE0(b),2b2 for bPJb0
and hence the number of zeros off l

1( ib, x) for bPJb0
is exactly

one more than the number of zeros off l
1( ib0 , x). If m is odd, thenE0(b) intersects the parabol

E52b2 by crossing from one side to the other of that parabola; ifE0(b),2b2 on
(b02e,b0), then the number of zeros off l

1( ib, x) decreases by one asb increases throughb0 ;
if E0(b).2b2 on (b02e,b0), then the number of zeros increases by one asb increases through
b0 . In order to prove that the number of zeros off l

1( ib, x) can only change ifb corresponds to
a bound state of~1.1! with real ~negative! energy, we can proceed as follows. Ifb1 andb2 with
b1,b2 correspond to two consecutive real bound-state energies of~1.1!, then no eigenvalue
branch can intersect the parabolaE52b2 for bP(b1 ,b2). Hence the number of eigenvalu
branches that lie below2b2 is constant forbP(b1 ,b2), or equivalently, the number of zeros o
f l

1( ib, x) is constant forbP(b1 ,b2). j

We remark that statement~iii ! is a familiar result that also follows from the min-max prin
ciple. An example illustrating Theorem 10.6 is given in the next section~Example 11.3!.

Proposition 10.7:AssumeP,QPL1(R) and let k05a1 ib for someaÞ0 and b.0. If
P(x)<2b, then f l

1(k0, x) and f r
1(k0, x) cannot vanish for anyxPR.

Proof: Using ~4.7! in ~4.16! we obtain

d

dx
@ f l

1~2k0, x!; f l
1~k0, x!#52ia@P~x!22b#u f l

1~k0, x!u2. ~10.17!

Supposef l
1(k0, x) has at least one zero and letd be the right-most zero off l

1(k0, x). Note that,
as seen from~4.7!, the zeros off l

1(2k0, x) and f l
1(k0, x) coincide. Integrating~10.17! over

(d,1`) and using~8.1! and ~8.2!, we obtain

2ia E
d

`

dx @P~x!22b#u f l
1~k0, x!u250.

This is impossible ifaÞ0 andP(x)<2b; note thatP(x)52b on a semi-infinite interval would
contradictPPL1(R). Hencef l

1(k0, x) cannot vanish for anyxPR. The proof for f r
1(k0, x) is

analogous. j
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XI. EXAMPLES

In this section we illustrate our results on the number and location of the zeros of 1/T1(k) and
on the zeros of the Jost solutions with some explicit examples. Example 11.1 shows the
behavior of some eigenvalues branches as it was discussed in Secs. IX and X. Examp
exhibits the possibility of real zeros of 1/T1(k) and of complex zeros off the imaginary axis
C1. In Example 11.3 we consider the zeros on the imaginary axis and the corresponding
value branches. We also demonstrate the possibility of a double zero on the positive ima
axis. While Examples 11.1–11.3 involve simple step potentials, Example 11.4 concerns pot
that decay exponentially.

Example 11.1:For real parametersa6 andb6 , let

P~x!5H b1 , xP~0,1!,

b2 , xP~21,0!,

0, elsewhere,

Q~x!5H a1 , xP~0,1!,

a2 , xP~21,0!,

0, elsewhere.

~11.1!

Then by straightforward calculations one obtains

e22ik

T1~k!
5coss1 coss21F1 sin s1 coss21F2 coss1 sin s22G sin s1 sin s2 ,

~11.2!

where

s65Ak22 ikb62a6, F65
k21s6

2

2iks6
, G5

s1
2 1s2

2

2s1s2
.

For a65215, b152, andb2522 we get three purely imaginary bound states atk51.568̄i ,
k52.717̄i , and k54.376̄i . Here and below we use an overline on the last digit to indic
round-off. These are all the bound states because a plot of argT1(k) for kPR1 reveals that
argT1(01)55p/2, so that by~9.22! we haveN(P,Q)53; note that we are in the generic cas
Figure 1 shows the eigenvalue curves associated with the potentialV(b, x)5Q(x)2bP(x) @cf.
~9.16!#. The analysis shows that the branchesE2(b) andE1(b) are not concave, onlyE3(b) is
concave down. This, in particular, illustrates part~iii ! of Theorem 10.6.

Example 11.2:In this example we demonstrate the existence of nonreal zeros of 1/T1(k).
Puttinga250, a15a, b250, andb15b in ~11.1! and ~11.2!, we get

1

T1~k!
5eikFcoss1

k21s2

2iks
sin sG , ~11.3!

wheres5Ak22 ibk2a. By Theorem 9.3, ifa50 andb.2, then we must have a bound state
k5 ib for some positiveb. Indeed, ifa50 andb521/10, we obtain a bound state atk50.15̄i and
this is the only bound state. Whena529 and b55, we find bound states atk155.619̄i , k2

6

FIG. 1. Eigenvalue curvesE1(b), E2(b), E3(b) intersecting the parabolaE52b2.
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566.28̄10.495̄i , k3
6560.838̄10.81̄i , andk4

6569.898̄10.2192̄i . As in Example 11.1 it fol-
lows that these are all the bound states. In Fig. 2 we plotf l

1(k1 , x), u f l
1(k2

1 , x)u, u f l
1(k3

1 , x)u,
and u f l

1(k4
1 , x)u on the intervalxP(22,2). Let us remark that the functionsf l

1(k1 , x) and
f l

1(k2
6 , x) are even with respect tox51/2, and the functionsf l

1(k3
6 , x) and f l

1(k4
6 , x) are odd

with respect tox51/2. Whena529.2738̄and b53.9708̄, we obtain a zero of 1/T1(k) at k
51. In the special case whena50 we have

1

T1~0!
512

b

2
,

L1~0!

T1~0!
5

R1~0!

T1~0!
5

b

2
.

Hence 1/T1(0)50 if and only if b52. Note that the bound states may occur even whenQ(x)
>0. For example, whena51 andb510, we obtain over 200 bound states, four of which cor
spond tok values on the positive imaginary axis withk5 ib j , where

b150.13̄, b252.50̄, b355.63̄, b459.16̄.

When a50 and b5100, we obtain 31 bound states on the positive imaginary axis witk
5 ib j , where

b150.10̄, b250.41̄, b350.93̄, b451.67̄, b552.64̄, b653.85̄, b755.33̄,

b857.09̄, b959.19̄, b10511.69̄, b11514.63̄, b12518.20̄, b13522.61̄,

b14528.43̄, b15537.63̄, b16560.41̄, b17569.69̄, b18575.60̄, b19580.11̄,

b20583.77̄, b21586.83̄, b22589.42̄, b23591.63̄, b24593.52̄, b25595.12̄,

b26596.46̄, b27597.57̄, b28598.46̄, b29599.14̄, b30599.62̄, and b31599.91̄,

and there are also many more bound states corresponding tok-values off the imaginary axis in
C1. In this case, one finds thatf l

1( ib, x) has no zeros forb50, no zeros forbP(b31,1`), one
zero for bP(0,b1), and one zero forbP(b30,b31), j zeros forbP(b j 21 ,b j ) and j zeros for
bP(b312 j ,b322 j ) with j 52,3,...,15, and 16 zeros forbP(b16,b17).

Example 11.3:~a! Let a50 andb510 in Example 11.2, and henceQ(x)50 andP(x)>0.
Note thatN(0,Q)50. From~9.16! we obtain@cf. ~11.3!#

2DA2E cosD5~D21E!sin D, ~11.4!

FIG. 2. ~a! f l
1(k1 , x), ~b! u f l

1(k2
1 , x)u, ~c! u f l

1(k3
1 , x)u, and~d! u f l

1(k4
1 , x)u.
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whereE5E(b) is the energy in~9.16! andD5Abb2a1E. Using the half-angle formula for the
tangent function, we can write~11.4! as a pair of equations determining the eigenvalue curve

tanS D

2 D5
A2E

D
, tanS D

2 D52
D

A2E
. ~11.5!

Recall from the proof of Theorem 9.7 that the bound states of~1.1! with real energies correspon
to theb-values where the eigenvalue curves intersect the parabolaE52b2. Whena50 andb
510, from ~11.5! we obtain two eigenvalue branches intersecting the parabolaE52b2. Let
E2(b) denote the eigenvalue branch responsible for the lowest real bound-state energy. W
that E2(b) emerges from~0,0! and intersects the parabolaE52b2 at b359.273̄. The second
eigenvalue branch,E1(b), emerges from zero atb5p2/10 and then intersects the parabolaE
52b2 at b152.114̄and atb255.963̄. These eigenvalue branches and the parabolaE52b2 are
plotted in Fig. 3. The valuesb1 , b2 , and b3 correspond to simple zeros of 1/T1( ib). If
b>b3 , then f l

1( ib, x) has no zeros. IfbP@b2 ,b3), then f l
1( ib, x) has one zero becauseE2(b)

is the only eigenvalue below2b2. If bP(b1 ,b2), then f l
1( ib, x) has two zeros because bo

E2(b) andE1(b) lie below 2b2. If bP(0,b1# then f l
1( ib, x) has one zero, and ifb50 then

f l
1(0, x) has no zeros because~2.6! with Q(x)50 has no bound states.

~b! Whena50, one can choose the parameterb such that the branchE1(b) just touches the
parabolaE52b2 at b1 . Then the slope of the eigenvalue curve atb1 must be equal to22b1 ,
and this happens when

tanSAb224

4 D 52
Ab12

Ab22
,

from which we getb59.2066̄, leading tob153.603̄, and b1 corresponds to a double zero o
1/T1( ib). The eigenvalue branchE2(b) intersects the parabolaE52b2 at b2 ; we haveb2

58.433̄, which is responsible for the lowest real bound-state energy. In this case,f l
1( ib, x) has

no zeros forb50, one zero forbP(0,b2), and no zeros forbP@b2 ,1`). We show the two
eigenvalue branches and the parabolaE52b2 in Fig. 4.

~c! Whenb510 we can finda such that the lowest real bound-state energy corresponds
double zero of 1/T1( ib). Proceeding as in~b!, we get

a5
10b1~b124!

b123
,

whereb1 is obtained by solving

tanS A10b13b22b3

2Ab23
D 5

bAb23

A10b13b22b3
. ~11.6!

FIG. 3. The parabolaE52b2 intersecting the eigenvalue curvesE1(b) andE2(b).
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From ~11.6! we getb154.724̄and hencea519.852̄. In this casef l
1( ib, x) has no zeros for any

b>0. The eigenvalue curveE1(b) and the parabolaE52b2 are plotted in Fig. 5, and it is see
that there are no other real bound-state energies besides2b1

2.
Example 11.4:Let

h l
1~k, x!512

2i ~11b!e

k1 i e

ce22ex

11ce22ex , x>0, ~11.7!

h r
1~k, x!512

2i ~11b!e

k1 i e

ce2ex

11ce2ex , x>0, ~11.8!

wherec, e are positive parameters andb is a real parameter. Using~1.1!, ~1.2!, ~3.3!, ~3.4!, ~11.7!,
and ~11.8!, we obtain

P~x!5
4bece22euxu

11ce22euxu ,

Q~x!5
4e2ce22euxu@23b221b2ce22euxu#

~11ce22euxu!2 .

Henceep5(11c)2b and using~6.3! we get

T1~k!5
k~k1 i e!2ep

~k2k0!~k2k1!~k2k2!
,

where we have defined

FIG. 4. The parabolaE52b2 touchingE1(b) and intersectingE2(b).

FIG. 5. The parabolaE52b2 touching the eigenvalue curveE1(b).
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k05 i
e

11c
@211c12bc#,

k65
i e

2~11c!
@~211c14bc!6A11c2114c116bc#. ~11.9!

Let us now analyze the poles ofT1(k). First note thate simply acts as a scaling parameter for t
location of the poles; thus the relevant parameters areb and c. We can divide the half-plane
$(c,b):c.0% into four separate regions by using the three nonintersecting curvesb5G1(c), b
5G0(c), andb5G2(c), where

G0~c!5
12c

2c
, G6~c!52

c23

4c
6A~c23!2

16c2 1
1

c
.

On these three curves the exceptional case occurs; note thatk250 on G1 , k150 on G2 , and
k050 onG0 . The number of bound states changes by one as we cross each of these three
otherwise, we are in the generic case. Note that:

~i! If b.G1(c), thenk0, k1 , andk2 all lie on the positive imaginary axis, and hence w
have three bound states.

~ii ! If G0(c),b<G1(c), then k0 and k1 lie on the positive imaginary axis, butk2¹C1;
hence we have two bound states.

~iii ! If G2(c),b<G0(c), then there is exactly one bound state becausek1 lies on the
positive imaginary axis butk0 andk2 are not inC1.

~iv! There are no bound states whenb<G2(c) because none ofk0, k1 , andk2 lie in C1. In
this case,k0 is always located on the imaginary axis;k1 andk2 lie on the imaginary axis when
b>2(c11411/c)/16 and they lie inC2 symmetrically located with respect to the imagina
axis.

This example can also be specialized to show the occurrence of a double zero of 1/T1(k).
Indeed, chooseb52(c11411/c)/16 andcP(21,2512A5). Then, from~11.9! we see that
k15k252 i e(c2110c15)/@8(11c)#, and henceT1(k) has a double pole on the positiv
imaginary axis inC1 for any cP(21,2512A5). Note also that whenb5(12c)/(4c) and
cP(21,2512A5), althoughk0 is located on the negative imaginary axis,k1 andk2 are sym-
metrically located on the real axis; thus, in this caseT1(k) has poles on the real axis. Whenb
52(51A5)/10 andc52512A5, bothk1 andk2 vanish, and hence we get a simple pole f
T1(k) at k50; this illustrates the exceptional case when the denominator in~5.3! vanishes.

APPENDIX: SMALL- k ESTIMATES

In this Appendix, proceeding as in Refs. 11 and 12, we obtain various small-k estimates that
are needed in the proof of Theorem 5.2.

In the exceptional case, letc̃(k, x) be the solution of~1.1! satisfying the initial conditions

c̃~k,0!5 f l~0,0!, c̃8~k,0!5 f l8~0,0!, kPR. ~A1!

Note thatc̃(0, x)5 f l(0, x), and hencec̃(0, x) is bounded in such a way thatc̃(0,1`)51 and
c̃(0,2`)5g, whereg is the constant defined in~2.9!. We have

c̃~k, x!5 f l~0,0!coskx1 f l8~0,0!
sin kx

k
1

1

k E
0

x

dy sin k~x2y!@ ikP~y!1Q~y!#c̃~k,y!.

~A2!

Let c1(k, x) denote the solution of~1.1! with P(x)50 and satisfying~A1!. We have

c1~k, x!5 f l~0,0!coskx1 f l8~0,0!
sin kx

k
1

1

k E
0

x

dy sin k~x2y!Q~y!c1~k,y!. ~A3!
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Note thatc̃(0, x)5c1(0, x).
Proposition A.1:AssumeQPL1

1(R). For x,kPR, we have

uc1~k, x!2c1~0, x!u<CS ukxu
11ukxu D

2

, uc1~k, x!u<C~11uku!. ~A4!

Proof: Note thatc1(0, x)5 f l(0, x) and hence it is uniformly bounded forxPR. Furthermore,

c1~0, x!5 f l~0,0!1x f l8~0,0!1E
0

x

dy ~x2y!Q~y!c1~0,y!. ~A5!

Subtracting~A5! from ~A3! and iterating the resulting integral equation as in the proof of Pro
sition A.1 of Ref. 12~usingH(x)[H151 there! we obtain the first inequality in~A4!. Using that
inequality and the boundedness ofc1(0, x), we obtain the second inequality in~A4!. j

Let us choose a second linearly independent solution of~1.1! with P(x)50 such that the
Wronskian@c1(k, x);c2(k, x)# is equal to 1. For example, we can choosec2(k, x) so that it
satisfies the initial conditionsc2(k,0)50 andc28(k,0)51/f l(0,0); note that there is no loss o
generality in assumingf l(0,0)Þ0, since the casef l(0,0)50 can be handled by a shift of th
origin. We have

c2~k, x!5
sin kx

k f l~0,0!
1

1

k E
0

x

dy sin k~x2y!Q~y!c2~k,y!. ~A6!

Proposition A.2:AssumeQPL1
1(R). Then, forx,kPR we have

uc2~k, x!u<
Cuxu

11ukxu
, uc2~k, x!2c2~0,x!u<CuxuS ukxu

11ukxu D
2

. ~A7!

Proof: Iterating ~A6! as in the proof of Proposition A.1 of Ref. 12, we obtain the fi
inequality in ~A7!. Note that from~A6! we have

c2~0,x!5
x

f l~0,0!
1E

0

x

dy ~x2y!Q~y!c2~0,y!. ~A8!

Subtracting~A8! from ~A6! and iterating the resulting integral equation, we obtain the sec
inequality in ~A7!. j

Proposition A.3:AssumeP,QPL1
1(R). Then, forxPR and ask→0 in R, we have

c̃~k, x!2c1~k, x!52 ikc1~0,x!E
0

x

dz c2~0, z!P~z!c1~0, z!

1 ikc2~0, x!E
0

x

dz P~z!c1~0, z!21OS ukxuF ukxu
11ukxuG

2D . ~A9!

Proof: Recall thatc1(k, x) and c2(k, x) are two linearly independent solutions of~1.1! when
P(x)50. Using variation of parameters on~1.1!, we obtain~assumingx>0!

c̃~k, x!2c1~k, x!52 ikc1~k, x!E
0

x

dz c2~k,z!P~z!c̃~k,z!

1 ikc2~k, x!E
0

x

dz c1~k,z!P~z!c̃~k,z!. ~A10!

Let us write~A10! as

c̃~k, x!2c1~k, x!5A11A21A31A41A51A61A71B11B2 , ~A11!
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where we have defined

B152 ikc1~k,x!E
0

x

dz c2~k,z!P~z!@c̃~k,z!2c1~k,z!#,

B25 ikc2~k,x!E
0

x

dz c1~k,z!P~z!@c̃~k,z!2c1~k,z!#,

A152 ikc1~0,x!E
0

x

dz c2~0, z!P~z!c1~0, z!,

A252 ik@c1~k, x!2c1~0,x!#E
0

x

dz c2~k,z!P~z!c1~k,z!,

A352 ikc1~0,x!E
0

x

dz @c2~k,z!2c2~0, z!#P~z!c1~k,z!,

A452 ikc1~0,x!E
0

x

dz c2~0, z!P~z!@c1~k,z!2c1~0, z!#,

A55 ikc2~0,x!E
0

x

dz P~z!c1~0, z!2,

A65 ik@c2~k, x!2c2~0,x!#E
0

x

dz P~z!c1~k,z!2,

A75 ikc2~0, x!E
0

x

dz @c1~k,z!2c1~0, z!#@c1~k,z!1c1~0, z!#P~z!.

Using the estimates in~A4! and ~A7!, we obtain

uA2u<Cuku~11uku!S ukxu
11ukxu D

2E
0

x

dz zuP~z!u, ~A12!

uA3u<Cuku~11uku!S ukxu
11ukxu D

2E
0

x

dz zuP~z!u, ~A13!

uA4u<CukuS ukxu
11ukxu D

2E
0

x

dz zuP~z!u, ~A14!

uA6u<Cukxu~11uku!2S ukxu
11ukxu D

2E
0

x

dz uP~z!u, ~A15!

uA7u<Cukxu~11uku!S ukxu
11ukxu D

2E
0

x

dz uP~z!u. ~A16!

For x,0 analogous estimates hold. Iterating the integral equation forc̃(k, x)2c1(k, x) given in
~A11! and using~A12!–~A16!, we obtain~A9!. j

In order to estimate the small-k asymptotics ofT1(k), we will use~4.2!. Note that as in~A24!
of Ref. 12 we have
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



1991J. Math. Phys., Vol. 39, No. 4, April 1998 Aktosun, Klaus, and van der Mee

Downloaded 
f l~0,0!@ f l
1~k, x!; f r

1~k, x!#5 f r
1~k,0!F2 ik f l~0,0!1 f l8~0,0!1E

0

`

dz eikz@ ikP~z!1Q~z!#c̃~k,z!G
2 f l

1~k,0!F ik f l~0,0!1 f l8~0,0!2E
2`

0

dz e2 ikz@ ikP~z!

1Q~z!#c̃~k,z!G . ~A17!

Proposition A.4:AssumeP,QPL1
1(R). Then, ask→0 we have

E
0

`

dz eikz@ ikP~z!1Q~z!#c̃~k,z!52 f l8~0,0!1 ik f l~0,0!2 ik1 ikE
0

`

dz P~z! f l~0, z!21o~ uku!,

~A18!

E
2`

0

dz eikz@ ikP~z!1Q~z!#c̃~k,z!5 f l8~0,0!2 ikg1 ik f l~0,0!

1~ ik/g!E
2`

0

dz P~z! f l~0, z!21o~ uku!, ~A19!

whereg is the constant defined in~2.9!.
Proof: Let us write

E
0

`

dz eikz@ ikP~z!1Q~z!#c̃~k,z!5J11J21J31J41J51J6 , ~A20!

where

J15E
0

`

dz Q~z!c̃~0, z!, J25E
0

`

dz Q~z!@eikz21#c̃~0, z!,

J35 ikE
0

`

dz eikzP~z!c̃~0, z!,

J45E
0

`

dz eikzQ~z!@c1~k,z!2c̃~0, z!#,

J55 ikE
0

`

dz eikzP~z!@c̃~k,z!2c̃~0, z!#,

J65E
0

`

dz eikzQ~z!@c̃~k,z!2c1~k,z!#.

As in ~A25! and ~A26! of Ref. 12 we haveJ152 f l8(0,0) and

J25 ik@ f l~0,0!21#1o~ uku!, k→0.

As k→0, using~A4! we obtainJ45o(uku) and

J35 ikE
0

`

dz P~z!c̃~0, z!1o~ uku!,

and using~A9! we haveJ55o(uku) and

J65 ik E
0

`

dz Q~z!F2c1~0, z!E
0

z

dt c2~0, t !P~ t !c1~0, t !1c2~0, z!E
0

z

dt P~ t !c1~0, t !2G
1o~ uku!. ~A21!

Notice that @c1(k, x);c2(k, x)#51 and Q(z)cs(0, z)5cs9(0, z) for s51,2. Therefore, using
c28(0,1`)51, c18(0, z)5o(z21) asz→1`, c1(0, z)5c̃(0, z), and integration by parts twice in
~A21!, we obtain
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J652 ik E
0

`

dz P~z!c̄~0, z!1 ik E
0

`

dz P~z!c̄~0, z!21o~ uku!, k→0.

Thus, from~A20! we obtain~A18!. Similarly, usingc18(0,2`)50 andc1(0,2`)5g, we get
~A19!.
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