Tabella 1: Best 5 out of 6

es.3	es.4	es.5	es.6	somma
5	5	5	5	30
	5	5 5	5 5 5	5 5 5 5

Meccanica Razionale 1: Primo Scritto Generale 19.01.2011

1. Consideriamo il seguente moto di un punto P:

$$x = \cos(t),$$
 $y = z = \frac{1}{\sqrt{2}}\sin(t),$

essendo $t \geq 0$.

- a. Calcolare le componenti e i moduli della velocità del punto P.
- b. Calcolare la curvatura della curva descritta dal punto P.
- c. Senza fare calcoli: Qual'è la torsione della curva in ogni punto? Perchè?
- 2. Con riferimento ad una terna trirettangola e levogira Oxyz di versori \vec{i}, \vec{j} e \vec{k} , si consideri il sistema di vettori applicati

$$(P_1, -\vec{i} + 2\vec{j} - \vec{k}), \quad (P_2, \vec{j} + 2\vec{k}), \quad (P_3, \vec{i} + \vec{j}),$$

essendo $P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (1, 0, 1)$. Si chiede di:

- a. Trovare il momento risultante del sistema rispetto all'origine.
- b. Scrivere l'equazione dell'asse centrale.
- 3. Un corpo rigido ruota attorno ad un asse fisso con velocità angolare

$$\vec{\boldsymbol{\omega}} = \frac{1}{1 + t^2} \, \vec{u},$$

essendo \vec{u} il versore dell'asse di rotazione.

- a. Calcolare la velocità e il suo modulo di un punto P situato a distanza d dell'asse di rotazione.
- b. Calcolare l'accelerazione e il suo modulo di un punto P situato a distanza d dell'asse di rotazione.
- 4. Sia dato un disco di raggio R con centro l'origine nel piano XY, composto da parti omogenee: la parte superiore (y > 0) di densità μ_1 e la parte inferiore (y < 0) di densità μ_2 . Si determinino
 - a. il baricentro del disco,
 - b. il momento d'inerzia rispetto all'asse x.
- 5. Consideriamo il pendolo semplice, dove un punto materiale di massa m è vincolato a muoversi su una circonferenza liscia situata nel piano xz. Purtroppo c'è anche un vento orizzontale e parallelo al piano xz che esercita una forza costante e orizzontale sulla massa (cioè, $\vec{F}_{\text{vento}} = ma_v \vec{i}$, essendo $a_v > 0$).
 - a. Trovare la forza applicata totale.
 - b. Spiegare perchè la forza applicata totale è conservativa.
 - c. Trovare le equazioni del moto.
- 6. Una particella di massa m è vincolata a muoversi sul paraboloide di equazione $z=x^2+y^2$ sotto l'effetto della forza elastica $\vec{F}=-k\vec{r}$, essendo k>0 la costante di elasticità.
 - a. Determinare il grado di libertà N del sistema e formulare la lagrangiana in N coordinate generalizzate. (Si consiglia di scegliere le solite coordinate cilindriche).
 - b. Indicare due costanti del moto e spiegare perchè lo sono.
 - c. Formulare le equazioni di Eulero-Lagrange.

Soluzioni:

1. La velocità è

$$\dot{\boldsymbol{x}}(t) = \left(-\sin(t), \frac{1}{\sqrt{2}}\cos(t), \frac{1}{\sqrt{2}}\cos(t)\right), \qquad |\dot{\boldsymbol{x}}(t)| = 1.$$

Quindi $s(t) = \int_0^t |\dot{\boldsymbol{x}}(t')| dt' = t$. Allora

$$\frac{d^2\boldsymbol{x}}{ds^2} = \frac{d^2\boldsymbol{x}}{dt^2} = \left(-\cos(t), -\frac{1}{\sqrt{2}}\sin(t), -\frac{1}{\sqrt{2}}\sin(t)\right), \ \kappa(s) = \left|\frac{d^2\boldsymbol{x}}{ds^2}\right| = 1.$$

Poichè il moto è piano (infatti, avviene nel piano y=z), si deve annullare la torsione. P.S. Introducendo le coordinate ortogonali

$$\xi = x,$$
 $\eta = \frac{1}{2}\sqrt{2}(y+z),$ $\zeta = \frac{1}{2}\sqrt{2}(-y+z),$

si possono riscrivere le equazioni del moto nella seguente forma:

$$\xi = \cos(t), \qquad \eta = \sin(t), \qquad \zeta = 0.$$

6. C'è una singola particella e c'è un vincolo; quindi ci sono N=2 gradi di libertà. Scegliando le coordinate cilindriche (r, θ, z) , otteniamo

$$\begin{split} \dot{x} &= \dot{r}\cos\theta - r\dot{\theta}\sin\theta,\\ \dot{y} &= \dot{r}\sin\theta + r\dot{\theta}\cos\theta,\\ \dot{z} &= \frac{d}{dt}(r^2) = 2r\dot{r}, \end{split}$$

e quindi

$$|\dot{\boldsymbol{x}}(t)| = [\dot{r}^2 + r^2\dot{\theta}^2 + 4r^2\dot{r}^2]^{1/2}.$$

Dunque

$$T = \frac{1}{2}m[\dot{r}^2 + r^2\dot{\theta}^2 + 4r^2\dot{r}^2], \qquad U = \frac{1}{2}k(r^2 + z^2) = \frac{1}{2}k(r^2 + r^4),$$

e quindi

$$\mathcal{L} = \frac{1}{2}m[\dot{r}^2 + r^2\dot{\theta}^2 + 4r^2\dot{r}^2] - \frac{1}{2}k(r^2 + r^4).$$

Poichè la lagrangiana \mathcal{L} non dipende esplicitamente da t, l'hamiltoniana H=T+U è una costante del moto. Un'altra costante del moto è il momento generalizzato

$$p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2 \dot{\theta},$$

poichè θ è una variabile ciclica (cioè, \mathcal{L} non dipende da θ). Un'equazione di Lagrange è $p_{\theta}=$ costante oppure $\dot{p}_{\theta}=0$. L'altra è

$$\underbrace{mr\dot{\theta}^2 + 4mr\dot{r}^2 - kr - 2kr^2}_{=\partial\mathcal{L}/\partial r} = \underbrace{m\dot{r} + 4mr^2\dot{r}}_{=\partial\mathcal{L}/\partial \dot{r}}.$$