
Lax Pairs and AKNS Pairs for Integrable PDEs

III. Inverse Scattering Transform

Certain NPDEs are classified as integrable in the sense that their corresponding IVPs can be solved with the
help of an IST. The idea behind the IST method is as follows: Each integrable NPDE is associated with a
LODE (or a system of LODEs) containing a parameter λ (usually known as the spectral parameter), and the
solution u(x, t) to the NPDE appears as a coefficient (usually known as the potential) in the corresponding
LODE. In the NPDE the quantities x and t appear as independent variables (usually known as the spatial
and temporal coordinates, respectively), and in the LODE x is an independent variable and λ and t appear
as parameters. It is usually the case that u(x, t) vanishes at each fixed t as x becomes infinite so that a
scattering scenario can be created for the related LODE, in which the potential u(x, t) can uniquely be
associated with some scattering data S(λ, t). The problem of determining S(λ, t) for all λ values from u(x, t)
given for all x values is known as the direct scattering problem for the LODE. On the other hand, the
problem of determining u(x, t) from S(λ, t) is known as the inverse scattering problem for that LODE.

The IST method for an integrable NPDE can be explained with the help of the diagram

u(x, 0)
direct scattering for LODE at t=0−−−−−−−−−−−−−−−−−−−−−→ S(λ, 0)

solution to NPDE

y
ytime evolution of scattering data

u(x, t) ←−−−−−−−−−−−−−−−−−−−−−−−
inverse scattering for LODE at time t

S(λ, t)

In order to solve the IVP for the NPDE, i.e. in order to determine u(x, t) from u(x, 0), one needs to perform
the following three steps:

(i) Solve the corresponding direct scattering problem for the associated LODE at t = 0, i.e. determine the
initial scattering data S(λ, 0) from the initial potential u(x, 0).

(ii) Time evolve the scattering data from its initial value S(λ, 0) to its value S(λ, t) at time t. Such an
evolution is usually a simple one and is particular to each integrable NPDE.

(iii) Solve the corresponding inverse scattering problem for the associated LODE at fixed t, i.e. determine
the potential u(x, t) from the scattering data S(λ, t).

It is amazing that the resulting u(x, t) satisfies the integrable NPDE and that the limiting value of u(x, t)
as t → 0 agrees with the initial profile u(x, 0).

IV. The Lax Method

In 1968 Peter Lax introduced [15] a method yielding an integrable NPDE corresponding to a given
LODE. The basic idea behind the Lax method is the following. Given a linear differential operator L
appearing in the spectral problem Lψ = λψ, find an operator A (the operators A and L are said to form a
Lax pair) such that:

(i) The spectral parameter λ does not change in time, i.e. λt = 0.

(ii) The quantity ψt −Aψ remains a solution to the same linear problem Lψ = λψ.

(iii) The quantity Lt + LA−AL is a multiplication operator, i.e. it is not a differential operator.
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From condition (ii) we get
L (ψt −Aψ) = λ (ψt −Aψ) , (4.1)

and with the help of Lψ = λψ and λt = 0, from (4.1) we obtain

Lψt − LAψ = λψt −A (λψ) = ∂t (λψ)−ALψ = ∂t (Lψ)−ALψ = Ltψ + Lψt −ALψ, (4.2)

where ∂t denotes the partial differential operator with respect to t. After canceling the term Lψt on the left
and right hand sides of (4.2), we get

(Lt + LA−AL) ψ = 0,

which, because of (iii), yields
Lt + LA−AL = 0. (4.3)

Note that (4.3) is an evolution equation containing a first-order time derivative, and it is the desired integrable
NPDE. The equation (4.3) is often called a compatibility condition.

Having outlined the Lax method, let us now list the Lax pairs (L,A) corresponding to some known
integrable NPDEs and their associated LODEs.

1. The integrable NPDE known as the Korteweg-de Vries (KdV) equation

ut − 6uux + uxxx = 0, (4.4)

is associated with the LODE known as the 1-D Schrödinger equation

−d2ψ

dx2
+ u(x, t) ψ = λψ, (4.5)

and the corresponding Lax pair (L,A) is given by

L = −∂2
x + u, A = −4∂3

x + 6u∂x + 3ux. (4.6)

2. The integrable NPDE known as the focusing nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u = 0, (4.7)

is associated with the system of first-order LODEs known as the Zakharov-Shabat system




dξ

dx
= −iλξ + u(x, t) η,

dη

dx
= iλη − u(x, t)∗ ξ,

(4.8)

where the asterisk denotes complex cojugation. The corresponding Lax pair (L,A) is given by

L =

[
i∂x −iu

−iu∗ −i∂x

]
, A =

[
2i∂2

x + i|u|2 −2iu∂x − iux

−2iu∗∂x − iu∗x −2i∂2
x − i|u|2

]
. (4.9)

3. The integrable NPDE known as the defocusing NLS equation

iut + uxx − 2|u|2u = 0, (4.10)
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is associated with the first-order system of LODEs





dξ

dx
= −iλξ + u(x, t) η,

dη

dx
= iλη + u(x, t)∗ ξ,

(4.11)

and the corresponding Lax pair (L,A) is given by

L =

[
i∂x −iu

iu∗ −i∂x

]
, A =

[
2i∂2

x − i|u|2 −2iu∂x − iux

2iu∗∂x + iu∗x −2i∂2
x + i|u|2

]
. (4.12)

4. The integrable system of NPDEs {
iut + uxx − 2u2v = 0,

ivt − vxx + 2uv2 = 0,
(4.13)

is associated with the first-order system of LODEs known as the AKNS system





dξ

dx
= −iλξ + u(x, t) η,

dη

dx
= iλη + v(x, t) ξ,

(4.14)

and the corresponding Lax pair (L,A) is given by

L =

[
i∂x −iu

iv −i∂x

]
, A =

[
2i∂2

x − iuv −2iu∂x − iux

2iv∂x + ivx −2i∂2
x + iuv

]
. (4.15)

Note that the case v = −u∗ in (4.13) yields the focusing NLS equation (4.7) and the case v = u∗ yields
the defocusing NLS equation (4.10).

5. The integrable NPDE known as the focusing modified Korteweg-de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0, (4.16)

is associated with the first-order linear system given by





dξ

dx
= −iλξ + u(x, t) η,

dη

dx
= iλη − u(x, t) ξ.

(4.17)

and the corresponding Lax pair (L,A) is given by

L =

[
i∂x −iu

−iu −i∂x

]
, A =

[−4∂3
x − 6u2∂x − 6uux 6ux∂x + 3uxx

−6ux∂x − 3uxx −4∂3
x − 6u2∂x − 6uux

]
. (4.18)

6. The integrable NPDE known as the defocusing modified Korteweg-de Vries (mKdV) equation

ut − 6u2ux + uxxx = 0, (4.19)
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is associated with the first-order linear system given by




dξ

dx
= −iλξ + u(x, t) η,

dη

dx
= iλη + u(x, t) ξ.

(4.20)

The corresponding Lax pair (L,A) is given by

L =

[
i∂x −iu

iu −i∂x

]
, A =

[−4∂3
x + 6u2∂x + 6uux 6ux∂x + 3uxx

6ux∂x + 3uxx −4∂3
x + 6u2∂x + 6uux

]
. (4.21)

7. The integrable NPDE known as the Dym equation

ut = u3uxxx, (4.22)

is associated with the LODE
d2ψ

dx2
=

λ

u(x, t)2
ψ, (4.23)

and the corresponding Lax pair (L,A) is given by

L = u2∂2
x, A = 4u3∂3

x + 6u2ux∂2
x. (4.24)

8. The integrable system of NPDEs




ut − 6uux + uxxx +
3
2

vvxxx + 3vxvxx − 6uvvx − 3
2

uxv2 = 0,

vt + vxxx − 6uvx − 6uxv − 15
2

v2vx = 0,

(4.25)

is associated with the Jaulent equation

−d2ψ

dx2
+ u(x, t) ψ + k v(x, t)ψ = k2ψ. (4.26)

Writing the above LODE in the form Lφ = kφ with
[

0 1

−∂2
x + u(x, t) v(x, t)

] [
ψ

kψ

]
= k

[
ψ

kψ

]
, φ :=

[
ψ

kψ

]
, (4.27)

the corresponding Lax pair (L,A) is given by

L =

[
0 1

−∂2
x + u v

]
, (4.28)

A =



−4∂3

x +
(

6u +
3
2

v2

)
∂x +

(
3ux − 3

2
vvx

)
6v∂x + 3vx

−6v∂3
x − 3vx∂2

x + 6uv∂x + (6uxv + 3uvx) −4∂3
x +

(
6u +

15
2

v2

)
∂x +

(
3ux +

15
2

vvx

)


 .

(4.29)
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9. The integrable NPDE known as the sine-Gordon equation

uxt = sin u, (4.30)

is associated with the linear system





dξ

dx
= −iλξ − 1

2
ux(x, t) η,

dη

dx
= iλη +

1
2

ux(x, t) ξ.

(4.31)

The corresponding Lax pair (L,A) is given by

L =




i∂x
iux

2
iux

2
−i∂x


 , (4.32)

A =
1
8

(∫ x

−∞
−

∫ ∞

x

)
dy

{
cos

(
u(x, t) + u(y, t)

2

) [
1 0

0 1

]
+ sin

(
u(x, t) + u(y, t)

2

) [
0 −1

1 0

]}
.

(4.33)

10. The integrable NPDE known as the sinh-Gordon equation

uxt = sinh u, (4.34)

is associated with the linear system





dξ

dx
= −iλξ − i

2
ux(x, t) η,

dη

dx
= iλη +

i

2
ux(x, t) ξ.

(4.35)

The corresponding Lax pair (L,A) is given by

L =




i∂x −ux

2

−ux

2
−i∂x


 , (4.36)

A =
1
8

(∫ x

−∞
−

∫ ∞

x

)
dy

{
cosh

(
u(x, t) + u(y, t)

2

) [
1 0

0 1

]
+ i sinh

(
u(x, t) + u(y, t)

2

) [
0 −1

1 0

]}
.

(4.37)

11. The integrable NPDE in two-spatial dimensions known as the Kadomtsev-Petviashvili (KP) equation

(ut − 6uux + uxxx)x + 3ε2uyy = 0, (4.38)

where ε = i for the KP I equation and ε = 1 for the KP II equation, is related to the linear PDE

ψxx + εψy + (λ− u)ψ = 0. (4.39)
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The corresponding Lax pair (L,A) is given by

L = −∂2
x − ε∂y + u, A = −4∂3

x + 6u∂x + 3ux − 3ε

2

(∫ x

−∞
−

∫ ∞

x

ds

)
uy(s, y, t). (4.40)

12. The coupled system of integrable NPDEs
{

ut = 10uxxx + 6uux − 24vx,

vt = 3uxxxxx + 3uuxxx + 3uxuxx − 6uvx − 8vxxx,
(4.41)

contains two potentials u(x, t) and v(x, t) and is associated with the LODE

d4ψ

dx4
+ u(x, t)

d2ψ

dx2
+ ux(x, t)

dψ

dx
+ v(x, t)ψ = λψ. (4.42)

The corresponding Lax pair (L,A) is given by

L = ∂4
x + ∂xu∂x + v, A = −8∂3

x − 6u∂x − 3ux. (4.43)

12. The coupled system of integrable NPDEs
{

ut + uxxx + uyyy = 3uxvxx + 3uvxxx + 3uyvyy + 3uvyyy,

vxy = 0,
, (4.44)

where u(x, y, t) and v(x, y, t) are the two potentials is known as the Nizhnik-Veselov-Novikov system.
It is related to the pair of LPDEs given by

{
ψxy = uψ,

ψt + ψxxx + ψyyy = 3vxxψx + 3vyyψy.
, (4.45)

V. The AKNS Method

In 1973 Ablowitz, Kaup, Newell, and Segur introduced [2,3] another method to determine an integrable
NPDE corresponding to a LODE. This method is now known as the AKNS method, and the basic idea
behind it is the following. Given a linear operator X associated with the first-order system θx = X θ, we are
interested in finding an operator T (the operators T and X are said to form an AKNS pair) such that:

(i) The spectral parameter λ does not change in time, i.e. λt = 0.

(ii) The quantity θt − T θ is also a solution to θx = X θ, i.e. we have (θt − T θ)x = X (θt − T θ).

(iii) The quantity Xt − Tx + XT − T X is a (matrix) multiplication operator, i.e. it is not a differential
operator.

Having outlined the AKNS method, let us now list the AKNS pairs (X , T ) corresponding to some known
integrable NPDEs and their associated linear ODEs.

1. For the KdV equation (4.4) and the associated 1-D Schrödinger equation written as the first-order
system θx = X θ, as [

ψx

ψ

]

x

=

[
0 u(x, t)− λ

1 0

][
ψx

ψ

]
, θ :=

[
ψx

ψ

]
, (5.1)
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we have the corresponding AKNS pair (X , T ) given by

X =

[
0 u− λ

1 0

]
, T =

[
ux −4λ2 + 2λu + 2u2 − uxx

4λ + 2u −ux

]
. (5.2)

2. The Zakharov-Shabat system (4.8) and the focusing NLS equation (4.7) correspond to the AKNS pair
(X , T ) given by

X =

[−iλ u

−u∗ iλ

]
, T =

[−2iλ2 + i|u|2 2λu + iux

−2λu∗ + iu∗x 2iλ2 − i|u|2

]
. (5.3)

3. The defocusing NLS equation (4.10) and the associated linear system (4.11) correspond to the AKNS
pair (X , T ) given by

X =

[−iλ u

u∗ iλ

]
, T =

[−2iλ2 − i|u|2 2λu + iux

2λu∗ − iu∗x 2iλ2 + i|u|2

]
. (5.4)

4. The focusing mKdV equation (4.16) and the associated linear system (4.17) correspond to the AKNS
pair (X , T ) given by

X =

[−iλ u

−u iλ

]
, T =

[ −4iλ3 + 2iλu2 4λ2u + 2iλux − uxx − 2u3

−4λ2u + 2iλux + uxx + 2u3 4iλ3 − 2iλu2

]
. (5.5)

5. The sine-Gordon equation (4.30) and the associated linear system (4.31) correspond to the AKNS pair
(X , T ) given by

X =



−iλ −1

2
ux

1
2

ux iλ


 , T =

i

4λ

[
cos u sin u

sin u − cosu

]
. (5.6)

6. The sinh-Gordon equation (4.34) and the associated linear system (4.35) correspond to the AKNS pair
(X , T ) given by

X =



−iλ − i

2
ux

i

2
ux iλ


 , T =

i

4λ

[
cosh u i sinh u

i sinhu − cosh u

]
. (5.7)

7. The AKNS system (4.14) and the associated system of integrable NPDEs correspond to the AKNS pair
(X , T ) given by

X =

[−iλ u

v iλ

]
, T =

[−2iλ2 − iuv 2λu + iux

2λv − ivx 2iλ2 + iuv

]
. (5.8)

8. The Jaulent equation (4.26) can be written as the first-order system θx = X θ, which is given by

[
ψx

ψ

]

x

=

[
0 u(x, t) + k v(x, t)− k2

1 0

][
ψx

ψ

]
, θ :=

[
ψx

ψ

]
, (5.9)
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For (5.9) and the associated integrable NPDEs (4.25) we have the corresponding AKNS pair (X , T ) is
given by

X =

[
0 u + kv − k2

1 0

]
, T =




vxk +
(

ux +
3
2

vvx

)
T12

4k2 + 2vk +
(

2u +
3
2

v2

)
−vxk −

(
ux +

3
2

vvx

)


 , (5.10)

where we have defined

T12 := −4k4+2vk3+
(

2u +
1
2

v2

)
k2+

(
vxx +

3
2

v3

)
k+

(
uxx + 2u2 +

3
2

uv2 − 3
2

v2
x −

3
2

vvxx

)
. (5.11)

9. For the Dym equation (4.22) and the associated first-order system θx = X θ, which is equivalent to
(4.23) and given by

[
ψx

ψ

]

x

=


 0

λ

u(x, t)2

1 0




[
ψx

ψ

]
, θ :=

[
ψx

ψ

]
, (5.12)

we have the corresponding AKNS pair (X , T ) given by

X =


 0

λ

u(x, t)2

1 0


 , T =


 2λux

4λ2

u
− 2λuxx

4λu −2λux


 . (5.13)

10. The 2-component Camassa-Holm (CH) equation

{
ρρt + (uρ)x = 0,

mt + 2uxm + umx + σρρx = 0,
(5.14)

where ρ(x, t) and u(x, t) are the two potentials, m := u − uxx and σ1 = 0, 1 and σ = ±1, is associated
with the LODE given by

d2ψ

dx2
=

(σ1

4
+ λm(x, t)− σλ2ρ(x, t)2

)
ψ. (5.15)

We can write the above LODE as a first-order system as θx = X θ with

[
ψx

ψ

]

x

=

[
0

σ1

4
+ λm(x, t)− σλ2ρ(x, t)2

1 0

] [
ψx

ψ

]
, θ :=

[
ψx

ψ

]
. (5.16)

The AKNS pair (X , T ) corresponding to (5.14) and (5.16) is given by

X =

[
0

σ1

4
+ λm(x, t)− σλ2ρ2

1 0

]
, (5.17)

T =



−1

2
ux σuρ2λ2 −

(
1
2
σρ2 + um

)
λ +

1
4

(2uxx + 2m− σ1u) +
σ1

2λ

1
2λ

− u
1
2

ux


 . (5.18)
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11. The Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (5.19)

where κ is a constant, is known to be integrable if [m(x, t) + κ] > 0 with m := u− uxx. It is associated
with the LODE

d2ψ

dx2
=

(
1
4
− m(x, t) + κ

2λ

)
ψ. (5.20)

We can write (5.20) as a first-order system of LODEs as θx = X θ with

[
ψx

ψ

]

x

=


 0

1
4
− m(x, t) + κ

2λ

1 0




[
ψx

ψ

]
, θ :=

[
ψx

ψ

]
, (5.21)

the corresponding AKNS pair (X , T ) is given by

X =


 0

1
4
− m + κ

2λ

1 0


 , T =



−1

2
ux

(m + κ)u
2λ

+ 4(2uxx − u + 2m + 2κ)− λ

4

−u− λ
1
2

ux


 . (5.22)

12. The integrable NPDE known as the Degasperis-Procesi equation

mt + umx + 3uxm = 0, m := u− uxx, (5.23)

is associated with the LODE
d3ψ

dx3
− dψ

dx
= λm(x, t) ψ. (5.24)

We can write (5.24) as a first-order system of LODEs as θx = X θ with




ψxx

ψx

ψ




x

=




0 1 λm(x, t)

1 0 0

0 1 0







ψxx

ψx

ψ


 , θ :=




ψxx

ψx

ψ


 . (5.25)

The AKNS pair (X , T ) corresponding to (5.23) and (5.25) is given by

X =




0 1 λm

1 0 0

0 1 0







ψxx

ψx

ψ


 , T =




1
λ
− ux 0 ux − λum

−u
1
λ

u

1
λ

−u ux




. (5.26)
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