$n D$ Spherical Functions

1 Laplacian in Spherical Coordinates

Let $d=2,3, \ldots$. Consider the orthogonal coordinates u_{1}, \ldots, u_{d} as well as the Jacobian matrix

$$
\left(\begin{array}{lll}
\frac{\partial x_{1}}{\partial u_{1}} & \frac{\partial x_{2}}{\partial u_{1}} \cdots & \frac{\partial x_{d}}{\partial u_{1}} \tag{1.1}\\
\frac{\partial x_{1}}{\partial u_{2}} & \frac{\partial x_{2}}{\partial u_{2}} \cdots & \frac{\partial x_{d}}{\partial u_{2}} \\
\frac{\partial x_{1}}{\partial u_{d}} & \frac{\partial x_{2}}{\partial u_{d}} \cdots & \frac{\partial x_{d}}{\partial u_{d}}
\end{array}\right),
$$

where x_{1}, \ldots, x_{d} are the Cartesian coordinates of \mathbb{R}^{d}. Then the Jacobian matrix has mutually orthogonal rows. Let h_{1}, \ldots, h_{d} denote the lengths of the respective row. Then the Jacobian (i.e., the absolute value of the determinant of the Jacobian matrix) equals $h_{1} h_{2} \ldots h_{d}$. We also have

$$
\begin{equation*}
\nabla_{x}^{2} \psi=\frac{1}{h_{1} \ldots h_{d}} \sum_{i=1}^{d} \frac{\partial}{\partial u_{i}}\left(\frac{h_{1} \ldots h_{i-1} h_{i+1} \ldots h_{d}}{h_{i}} \frac{\partial \psi}{\partial u_{i}}\right) . \tag{1.2}
\end{equation*}
$$

Now consider the following orthogonal coordinate transformation:

$$
\left\{\begin{array}{l}
x_{1}=r \cos \varphi_{1} \tag{1.3}\\
x_{2}=r \sin \varphi_{1} \cos \varphi_{2} \\
x_{3}=r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3} \\
\vdots \\
x_{d-1}=r \sin \varphi_{1} \ldots \sin \varphi_{d-2} \cos \varphi_{d-1} \\
x_{d}=r \sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{d-2} \sin \varphi_{d-1}
\end{array}\right.
$$

where $r \geq 0,\left\{\varphi_{1}, \ldots, \varphi_{d-2}\right\} \subset[0, \pi]$ and $\varphi_{d-1} \in[-\pi, \pi]$. In other words, x_{1} and x_{d} are as above, while

$$
x_{j}=r \prod_{s=1}^{j-1} \sin \varphi_{s} \cos \varphi_{j}, \quad j=2,3, \ldots, d-2
$$

Then

$$
\begin{equation*}
h_{r}=1, h_{\varphi_{1}}=r, h_{\varphi_{2}}=r \sin \varphi_{1}, \ldots, h_{\varphi_{d-1}}=r \sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{d-2} \tag{1.4}
\end{equation*}
$$

so that the Jacobian equals

$$
\begin{equation*}
J=r^{d-1} \prod_{s=1}^{d-2}\left(\sin \varphi_{s}\right)^{d-1-s} \tag{1.5}
\end{equation*}
$$

As a result,

$$
\begin{align*}
\nabla^{2} \psi & =\frac{1}{r^{d-1}} \frac{\partial}{\partial r}\left(r^{d-1} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}\left(\sin \varphi_{1}\right)^{d-2}} \frac{\partial}{\partial \varphi_{1}}\left(\left(\sin \varphi_{1}\right)^{d-2} \frac{\partial \psi}{\partial \varphi_{1}}\right) \\
& +\frac{1}{r^{2}\left(\sin \varphi_{1}\right)^{2}\left(\sin \varphi_{1}\right)^{d-3}} \frac{\partial}{\partial \varphi_{2}}\left(\left(\sin \varphi_{2}\right)^{d-3} \frac{\partial \psi}{\partial \varphi_{2}}\right) \\
& +\frac{1}{r^{2}\left(\sin \varphi_{1} \sin \varphi_{2}\right)^{2}\left(\sin \varphi_{3}\right)^{d-4}} \frac{\partial}{\partial \varphi_{3}}\left(\left(\sin \varphi_{3}\right)^{d-4} \frac{\partial \psi}{\partial \varphi_{3}}\right) \\
& +\ldots+\frac{1}{r^{2}\left(\sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{d-3}\right)^{2} \sin \varphi_{d-2}} \frac{\partial}{\partial \varphi_{d-2}}\left(\sin \varphi_{d-2} \frac{\partial \psi}{\partial \varphi_{d-2}}\right) \\
& +\frac{1}{r^{2}\left(\sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{d-2}\right)^{2}} \frac{\partial^{2} \psi}{\partial \varphi_{d-1}^{2}} . \tag{1.6}
\end{align*}
$$

In other words,

$$
\begin{equation*}
\nabla^{2} \psi=\frac{1}{r^{d-1}} \frac{\partial}{\partial r}\left(r^{d-1} \frac{\partial \psi}{\partial r}\right)-\frac{1}{r^{2}} L_{B}^{d} \psi \tag{1.7}
\end{equation*}
$$

where L_{B}^{d} is a differential operator in the angular variables called the Beltrami operator on S^{d-1}.

Instead of the above transformation of variables it is often convenient to
use the following orthogonal transformation:

$$
\left\{\begin{array}{l}
x_{1}=r \xi_{1} \tag{1.8}\\
x_{2}=r \sqrt{1-\xi_{1}^{2}} \xi_{2} \\
x_{3}=r \sqrt{\left(1-\xi_{1}^{2}\right)\left(1-\xi^{2}\right)} \xi_{3} \\
\vdots \\
x_{d-1}=r \sqrt{\left(1-\xi_{1}^{2}\right)\left(1-\xi^{2}\right) \ldots\left(1-\xi_{d-2}^{2}\right)} \cos \varphi_{d-1} \\
x_{d-1}=r \sqrt{\left(1-\xi_{1}^{2}\right)\left(1-\xi^{2}\right) \ldots\left(1-\xi_{d-2}^{2}\right)} \sin \varphi_{d-1},
\end{array}\right.
$$

which is related to the previous variables by

$$
\xi_{j}=\cos \varphi_{j}, \quad j=1, \ldots, d-2
$$

Thus $\xi_{j} \in[-1,1](j=1, \ldots, d-2)$ and $\varphi_{d-1} \in[-\pi, \pi]$. Then $h_{r}=1$ and $h_{\varphi_{d-1}}$ are as before (modulo $\xi_{j}=\cos \varphi_{j}$ for $j=1, \ldots, d-2$), but modulo this change we have $h_{\xi_{j}}=h_{\varphi_{j}} /\left(1-\xi_{j}^{2}\right)^{1 / 2}$ for $j=1, \ldots, d-2$. We then find (1.7), where

$$
\begin{align*}
\left(L_{B}^{d} \psi\right)\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d-2}, \varphi_{d-1}\right) & =-\frac{1}{\left(1-\xi_{1}^{2}\right)^{\frac{d-3}{2}}} \frac{\partial}{\partial \xi_{1}}\left(\left(1-\xi_{1}^{2}\right)^{\frac{d-1}{2}} \frac{\partial \psi}{\partial \xi_{1}}\right) \\
& +\frac{1}{1-\xi_{1}^{2}}\left(L_{B}^{d-1} \psi\right)\left(\xi_{2}, \ldots, \xi_{d-2}, \varphi_{d-1}\right) \tag{1.9}
\end{align*}
$$

The first few Beltrami operators are as follows:

$$
\begin{align*}
\left(L_{B}^{2} \psi\right)\left(\phi_{1}\right) & =-\frac{\partial^{2} \psi}{\partial \phi_{1}^{2}} \tag{1.10}\\
\left(L_{B}^{3} \psi\right)\left(\phi_{1}\right) & =-\left(\frac{\partial}{\partial \xi_{1}}\left(1-\xi_{1}^{2}\right) \frac{\partial \psi}{\partial \xi_{1}}\right)-\frac{\partial^{2} \psi}{\partial \phi_{2}^{2}} \tag{1.11}\\
\left(L_{B}^{4} \psi\right)\left(\phi_{1}\right) & =-\frac{1}{\sqrt{1-\xi_{1}^{2}}}\left(\frac{\partial}{\partial \xi_{1}}\left(1-\xi_{1}^{2}\right)^{3 / 2} \frac{\partial \psi}{\partial \xi_{1}}\right) \\
& -\frac{1}{1-\xi_{1}^{2}}\left[\left(\frac{\partial}{\partial \xi_{2}}\left(1-\xi_{2}^{2}\right) \frac{\partial \psi}{\partial \xi_{2}}\right)+\frac{\partial^{2} \psi}{\partial \phi_{3}^{2}}\right] . \tag{1.12}
\end{align*}
$$

In order to separate the variables in the d-D Schrödinger equation with spherically symmetric potential

$$
\begin{equation*}
\nabla^{2} \psi+\left[k^{2}-V(r)\right] \psi=0 \tag{1.13}
\end{equation*}
$$

we write

$$
\psi\left(r, \xi_{1}, \ldots, \xi_{d-2}, \varphi_{d-1}\right)=R(r) \Psi\left(\xi_{1}, \ldots, \xi_{d-2}, \varphi_{d-1}\right)
$$

and derive the ordinary differential equation

$$
\begin{equation*}
\frac{1}{r^{d-1}} \frac{d}{d r}\left(r^{d-1} R^{\prime}(r)\right)+\left(k^{2}-V(r)-\frac{\text { const. }}{r^{2}}\right) R(r)=0 \tag{1.14}
\end{equation*}
$$

as well as the partial differential equation

$$
\begin{equation*}
L_{B}^{d} \Psi=\text { const. } \Psi \tag{1.15}
\end{equation*}
$$

To find the common constant, we recall that the eigenfunctions of the Beltrami operator are exactly the d-variate harmonic polynomials of degree $n_{1}=0,1,2, \ldots$ restricted to S^{d-1}. Substituting

$$
\psi(r, \theta)=r^{n_{1}} y(\theta), \quad \theta \in S^{d-1}
$$

into the Laplace equation and noting that

$$
\frac{1}{r^{d-1}} \frac{d}{d r}\left(r^{d-1} \frac{d}{d r} r^{n_{1}}\right)=n_{1}\left(n_{1}+d-2\right) r^{n_{1}-2}
$$

we obtain

$$
\begin{equation*}
L_{B}^{d} \psi=n_{1}\left(n_{1}+d-2\right) \psi, \quad n_{1}=0,1,2, \ldots . \tag{1.16}
\end{equation*}
$$

Hence (1.14) reduces to the ordinary differential equation

$$
\begin{equation*}
\frac{1}{r^{d-1}} \frac{d}{d r}\left(r^{d-1} R^{\prime}(r)\right)+\left(k^{2}-V(r)-\frac{n_{1}\left(n_{1}+d-2\right)}{r^{2}}\right) R(r)=0 . \tag{1.17}
\end{equation*}
$$

Thus if $V(r) \equiv 0$, its only solutions finite as $r \rightarrow 0^{+}$are the functions

$$
\begin{equation*}
R(r) \simeq \frac{J_{n_{1}+\frac{1}{2}(d-2)}(k r)}{(k r)^{\frac{1}{2}(d-2)}} \tag{1.18}
\end{equation*}
$$

Next let

$$
\begin{equation*}
\psi\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d-2}, \phi_{d-1}\right)=\tilde{\phi}\left(\xi_{1}\right) \Phi\left(\xi_{2}, \ldots, \xi_{d-2}, \phi_{d-1}\right) \tag{1.19}
\end{equation*}
$$

Using (1.19) in (1.9) we get

$$
\begin{aligned}
n_{1}\left(n_{1}+d-2\right) & =-\frac{1}{\left(1-\xi_{1}^{2}\right)^{\frac{d-3}{2}} \tilde{\phi}\left(\xi_{1}\right)} \frac{d}{d \xi}\left(\left(1-\xi_{1}^{2}\right)^{\frac{d-1}{2}} \tilde{\phi}^{\prime}\left(\xi_{1}\right)\right) \\
& +\frac{1}{1-\xi_{1}^{2}} n_{2}\left(n_{2}+d-3\right),
\end{aligned}
$$

where n_{1} and n_{2} are integers satisfying $0 \leq n_{2} \leq n_{1}$. Substituting

$$
\tilde{\phi}\left(\xi_{1}\right)=\left(1-\xi_{1}^{2}\right)^{\frac{1}{2} n_{2}} \phi\left(\xi_{1}\right)
$$

we get after some calculations

$$
\begin{equation*}
\left(1-\xi_{1}^{2}\right) \phi^{\prime \prime}\left(\xi_{1}\right)-\left(2 n_{2}+d-1\right) \xi_{1} \phi^{\prime}\left(\xi_{1}\right)+\left(n_{1}-n_{2}\right)\left(n_{1}+n_{2}+d-2\right) \phi\left(\xi_{1}\right)=0 \tag{1.20}
\end{equation*}
$$

Substituting $\phi\left(\xi_{1}\right)=\sum_{s=0}^{\infty} c_{s} \xi_{1}^{s}$ into (1.20) it is easily seen that (1.20) has a polynomial solution of degree $n_{1}-n_{2}$. Also, (1.20) can be written in the form

$$
\begin{equation*}
\frac{d}{d \xi_{1}}\left(\left(1-\xi_{1}^{2}\right)^{n_{2}+\frac{d-1}{2}} \phi\left(\xi_{1}\right)\right)=\left(n_{1}-n_{2}\right)\left(n_{1}+n_{2}+d-2\right)\left(1-\xi_{1}^{2}\right)^{n_{2}+\frac{d-3}{2}} \phi\left(\xi_{1}\right) . \tag{1.21}
\end{equation*}
$$

For $\alpha>-1$ and $s=0,1,2, \ldots$ we now denote by $p_{s}^{(\alpha)}(\xi)$ the real polynomials with positive leading coefficient such that

$$
\int_{-1}^{1} p_{l}^{(\alpha)}(\xi) p_{r}^{(\alpha)}(\xi)\left(1-\xi^{2}\right)^{\alpha} d \xi=\delta_{l, r}
$$

Then

$$
\begin{equation*}
\phi\left(\xi_{1}\right) \simeq p_{n_{1}-n_{2}}^{\left(n_{2}+\frac{d-3}{2}\right)}\left(\xi_{1}\right) \tag{1.22}
\end{equation*}
$$

Note that these polynomials are proportional to the Jacobi polynomials $P_{n_{1}-n_{2}}^{\left(n_{2}+\frac{d-3}{2}\right)}\left(\xi_{1}\right)$.

We now repeat the above procedure $d-2$ times and observe that the functions of φ_{d-1} are the trigonometric functions 1 for $n_{d-1}=0$ and $\cos \left(n_{d-1} \varphi_{d-1}\right)$ and $\sin \left(n_{d-1} \varphi_{d-1}\right)$ for $n_{d-1}=1,2,3, \ldots$. Thus corresponding to the eigenvalue $n_{1}\left(n_{1}+d-2\right)$ of the Beltrami operator L_{B}^{d} on $L^{2}\left(S^{d-1}\right)$ we get the
following normalized eigenfunctions:

$$
\begin{cases}\frac{1}{\sqrt{2 \pi}} \prod_{s=1}^{d-2}\left(1-\xi_{s}^{2}\right)^{\frac{1}{2} n_{s+1}} p_{n_{s}-n_{s+1}}^{\left(n_{s+1}+\frac{1}{2}(d-2-s)\right)}\left(\xi_{s}\right), & n_{1} \geq \ldots \geq n_{d-1}=0 \tag{1.23}\\ \frac{1}{\sqrt{\pi}} \prod_{s=1}^{d-2}\left(1-\xi_{s}^{2}\right)^{\frac{1}{2} n_{s+1}} p_{n_{s}-n_{s+1}}^{\left(n_{s+1+2}^{2}(d-2-s)\right)}\left(\xi_{s}\right) \cos \left(n_{d-1} \varphi_{d-1}\right), & n_{1} \geq \ldots \geq n_{d-1} \geq 1 \\ \frac{1}{\sqrt{\pi}} \prod_{s=1}^{d-2}\left(1-\xi_{s}^{2}\right)^{\frac{1}{2} n_{s+1}} p_{n_{s}-n_{s+1}}^{\left(n_{s+1}+\frac{1}{2}(d-2-s)\right)}\left(\xi_{s}\right) \sin \left(n_{d-1} \varphi_{d-1}\right), & n_{1} \geq \ldots \geq n_{d-1} \geq 1\end{cases}
$$

Let us now examine the degeneracy of the eigenvalues of L_{B}^{d}. The number of linearly independent solutions of the eigenvalue equation

$$
L_{B}^{d} \psi=n_{1}\left(n_{1}+d-2\right) \psi
$$

equals

$$
\begin{align*}
N_{n_{1}}^{d} & =\#\left\{\left(n_{1}, n_{2}, \ldots, n_{d-2}, 0\right) \in \mathbb{Z}^{d-1}: n_{1} \geq n_{2} \geq \ldots \geq n_{d-2} \geq 0\right\} \\
& +2 \#\left\{\left(n_{1}, n_{2}, \ldots, n_{d-1}\right) \in \mathbb{Z}^{d-1}: n_{1} \geq n_{2} \geq \ldots \geq n_{d-2} \geq n_{d-1} \geq 1\right\} \\
& =N_{n_{1}}^{d-1}+2 \sum_{s=1}^{n_{1}} N_{n_{1}-s}^{d-1}=\sum_{s=0}^{n_{1}}\left(2-\delta_{s, 0}\right) N_{n_{1}-s}^{d-1}, \tag{1.24}
\end{align*}
$$

where $N_{n_{1}}^{2}=2 \delta_{n_{1}, 0}, N_{n_{1}}^{3}=2 n_{1}+1$ and $N_{n_{1}}^{4}=2 n_{1}\left(n_{1}+1\right)+1$. By induction we easily prove that in general

$$
\begin{equation*}
N_{n_{1}}^{d}=\frac{\left(2 n_{1}+d-2\right)\left(n_{1}+d-3\right)!}{\left(n_{1}\right)!(d-2)!} . \tag{1.25}
\end{equation*}
$$

