Secondo Parziale del Corso di Analisi Matematica 4¹

1. Calcolare il minimo e il massimo della funzione

$$f(x, y, z) = x + y + z$$

nel dominio $D = \{(x, y, z) \in \mathbb{R}^3 : (x - 1)^2 + (y - 2)^2 + (z - 3)^2 \le 36\}$. Interpretare il risultato geometricamente.

- 2. Determinare l'equazione del piano tangente all'iperboloide $z=x^2-2y^2$ nel punto (2,1,2).
- 3. Calcolare l'area della porzione del piano x+z=2 all'interno del dominio $\{(x,y,z)\in\mathbb{R}^3:z\geq x^2+y^2\}$. Com'è fatta l'intersezione del piano e della paraboloide?
- 4. Sia S la superficie di equazione

$$z = \begin{cases} 9 - x^2 - y^2 & \text{se } z \ge 0, \\ -\sqrt{9 - x^2 - y^2} & \text{se } z \le 0. \end{cases}$$

Sia $\vec{F} = (x^3, y^3, z^3)$. Calcolare l'integrale di superficie $\iint_S (\vec{F}, \nu) d\sigma$, specificando esplicitamente la direzione del versore normale ν .

5. Sia S la superficie

$$\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=4,\ z\geq -1\}.$$

Sia $\vec{F} = (y^4, z^3, x^2)$. Calcolare l'integrale di superficie $\iint_S (\operatorname{rot} \vec{F}, \nu) d\sigma$, specificando esplicitamente la direzione del versore normale ν .

6. Consideriamo la trasformazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita da

$$f(x,y) = (u(x,y), v(x,y)), \quad u = x^2 - y^2, \quad v = xy.$$

Trovare tutti i punti $(u, v) \in \mathbb{R}^2$ che hanno un intorno U in cui esiste la funzione inversa $f^{-1}: U \to X$ (con $X \subset \mathbb{R}^2$).

 $^{^{1}7.06.2006}$