
Cornelis VAN DER MEE, Spring 2008, Math 3330, Sample Final Exam

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Grade: . . . . . . . . . .Rank: . . . . . . . . . . .

1. Bring the following matrix to reduced row echelon form:

A =


0 0 1 3 −7
1 −5 0 2 4
0 0 2 6 −2
0 0 0 0 9

 ,

and determine its rank and nullity. Solution: Interchange the first two
rows and then subtract twice the second row from the third row:

1 −5 0 2 4
0 0 1 3 −7
0 0 2 6 −2
0 0 0 0 9

 =⇒


1 −5 0 2 4
0 0 1 3 −7
0 0 0 0 12
0 0 0 0 9

 .

Divide the third row by 12 and the fourth row by 9 and subtract the
third row from the fourth row, thus creating a final row of zeros. Then
add seven times the third row to the second row, subtract three times
the third row from the first row:

1 −5 0 2 4
0 0 1 3 −7
0 0 0 0 1
0 0 0 0 0

 =⇒


1 −5 0 2 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0

 ,

which is the row reduced echelon form with the leading one’s written in
boldface. Thus the rank is 3, the number of leading one’s. The nullity
is 5− 3 = 2, the number of columns not containing a leading 1.

2. Find all solutions of the linear system A~x = 0, where

A =

(
3 6 7
0 2 −1

)
.

Solution: Divide the first row by 3 and the second row by 2, and then
subtract twice the second row from the first row:(

1 2 7/3
0 1 −1/2

)
=⇒

(
1 0 10/3
0 1 −1/2

)
,



which is the row reduced echelon form. The variable x3 will be the
unique parameter in the solution and the solution is given by

x1 = −10

3
x3, x2 =

1

2
x3.

3. Consider the following 4× 4 matrix:

A =


0 1 1 3
1 0 0 −2
0 0 2 6
0 2 0 0

 .

a. Find a basis of the image of A and show that it really is a basis.

b. Find a basis of the kernel of A and show that it really is a basis.

Solution: Interchange the first two rows and the last two rows, then
interchange the second and third rows, and then divide the second and
last rows by 2,

1 0 0 −2
0 1 1 3
0 2 0 0
0 0 2 6

 =⇒


1 0 0 −2
0 2 0 0
0 1 1 3
0 0 2 6

 =⇒


1 0 0 −2
0 1 0 0
0 1 1 3
0 0 1 3

 .

Next subtract the second row from the third row and then the third
row from the last row, creating a last row of zeros:

1 0 0 −2
0 1 0 0
0 0 1 3
0 0 0 0

 ,

which is the row reduced echelon forms with the leading one’s written
in boldface. Thus the first three columns of the original matrix A form
a basis of the image of A:

Im A = span




0
1
0
0

 ,


1
0
0
2

 ,


1
0
2
0


 .



Using the above row reduced echelon form we now determine the kernel
of A by solving the corresponding linear system with zero right-hand
sides. This system [x1 − 2x4 = 0, x2 = 0, x3 + 3x4, 0 = 0] has the
solution x1 = 2x4, x2 = 0, and x3 = −3x4, where x4 is a parameter.
Thus

Ker A = span




2
0

−3
1


 .

4. Argue why or why not the set of polynomials

1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1,

is a basis of the vector space of polynomials of degree ≤ 4. Solution:
The vector space of all (real) polynomials of degree ≤ 4 has as a basis
{1, x, x2, x3, x4} and hence has dimension 5. With respect to this basis,
the five given polynomials can be represented by the five respective
column vectors

1
0
0
0
0

 ,


0
1
0
0
0

 ,


−1

0
2
0
0

 ,


0

−3
0
4
0

 ,


1
0

−8
0
8

 .

The 5× 5 matrix having these five vectors as columns,
1 0 −1 0 1
0 1 0 −3 0
0 0 2 0 −8
0 0 0 4 0
0 0 0 0 8

 ,

is upper triangular with nonzero diagonal entries and hence invertible.
Thus the five given polynomials form a basis of the vector space of
polynomials of degree ≤ 4.

5. Find the matrix of the orthogonal projection of R4 onto the hyperplane

x1 − 2x2 + 3x3 − 4x4 = 0.



Solution: The orthogonal projection is given by

~u1(~u1)
T + ~u2(~u2)

T + ~u3(~u3)
T ,

where {~u1, ~u2, ~u3} is an orthonormal basis of this hyperplane. How-
ever, the hyperplane consists of all vectors which are perpendicular to
the column vector (1,−2, 3,−4)T . Dividing this vector by its length√

30, we see that the orthogonal projection onto the line containing
the column vector (1,−2, 3,−4)T equals

1

30


1

−2
3

−4

 (
1 −2 3 −4

)
=

1

30


1 −2 3 −4

−2 4 −6 8
3 −6 9 −12

−4 8 −12 16

 .

The orthogonal projection onto the hyperplane is obtained by subtrac-
tion the previous projection from the identity matrix, i.e.,

P =
1

30


29 2 −3 4
2 26 6 −8

−3 6 21 12
4 −8 12 14

 .

6. Apply the Gram-Schmidt process to the given basis vectors of

V = span




3
0
4
0

 ,


0
0
5
0

 ,


4
0
0
3




to obtain an orthonormal basis of V . Solution: Let us call the three
basis vectors ~v1, ~v2, and ~v3, respectively. The orthonormal basis of V ,



{~u1, ~u2, ~u3}, is computed as follows:

~u1 =
~v1

‖~v1‖
=


3/5
0

4/5
0

 ,

~w2 = ~v2 − (~v2, ~u1)~u1 =


0
0
5
0

− 4


3/5
0

4/5
0

 =


−12/5

0
9/5
0

 ,

~u2 =
~w2

‖~w2‖
=


−4/5

0
3/5
0

 ,

~w3 = ~v3 − (~v3, ~u1)~u1 − (~v3, ~u2)~u2

=


4
0
0
3

 +
16

5


−4/5

0
3/5
0

− 12

5


3/5
0

4/5
0

 =


0
0
0
3

 ,

~u3 =
~w3

‖~w3‖
=


0
0
0
1

 .

7. Find a least-squares solution to the system1 0
2 1
0 3

 (
x1

x2

)
=

2
0
1

 .

Solution: Writing the system as A~x = ~b, a least squares solution is
given by

(AT A)−1AT~b,

where

AT A =

(
1 2 0
0 1 3

) 1 0
2 1
0 3

 =

(
5 2
2 10

)
.



Thus a least squares solution is given by

(
5 2
2 10

)−1 (
1 2 0
0 1 3

) 2
0
1

 =
1

46

(
10 −2
−2 5

) (
1 2 0
0 1 3

) 2
0
1


=

1

46

(
10 18 −6
−2 1 15

) 2
0
1

 =
1

46

(
14
11

)
.

8. Find the factors Q and R in the QR factorization of the matrix

M =

1 0
2 4
1 −2


by using the Gram-Schmidt process. Solution: Use the Gram-Schmidt
process to find an orthonormal basis of the linear span Im M of the
columns ~v1 and ~v2 of M . We get successively

~u1 =
~v1

‖~v1‖
=

1√
6

1
2
1

 ,

~w2 = ~v2 − (~v2 · ~u1)~u1 = ~v2 − ~v1 =

−1
2

−3

 , ~u2 =
~w2

‖~w2‖
=

1√
14

−1
2

−3

 .

Consequently,(
~v1 ~v2

)
︸ ︷︷ ︸

=M

=
(

~u1 ~u2

)
︸ ︷︷ ︸

=Q

(
1/
√

6 −1/
√

14

0 1/
√

14

)
︸ ︷︷ ︸

=R

=
(

~u1 ~u2

)
︸ ︷︷ ︸

=Q

(√
6

√
6

0
√

14

)
︸ ︷︷ ︸

=R

or in other words [by using R = QT M ]1 0
2 4
1 −2

 =

1/
√

6 −1/
√

14

2/
√

6 2/
√

14

1/
√

6 −3/
√

14

 (√
6

√
6

0
√

14

)
.



9. Find the determinant of the 3× 3 matrix

A =

1 2 −3
2 0 5
2 6 4

 .

Solution: By Sarrus’s rule,

det A = 1.0.4 + 2.5.2 + 2.6.(−3)− 2.0.(−3)− 2.2.4− 6.5.1

= 0 + 20− 36− 0− 16− 30 = −62.

10. Compute the eigenvalues and corresponding eigenvectors of the matrix

A =

(
5 3
1 7

)
.

Use this information to diagonalize the matrix A if possible. Otherwise
indicate why diagonalization is not possible. Solution: The eigenvalues
of A are the solutions of the quadratic equation det(λI − A) = 0. In
fact,

det(λI − A) = det

(
λ− 5 −3
−1 λ− 7

)
= (λ− 5)(λ− 7)− 3

= λ2 − 12λ + 32 = (λ− 4)(λ− 8),

hence the eigenvalues are 4 and 8. Having distinct eigenvalues, the
matrix A is diagonalizable. Let us compute the eigenvectors:

λ = 4 :

(
−1 −3
−1 −3

) (
x1 x2

)
=

(
0
0

)
⇒ Ker(4I − A) = span

[(
3

−1

)]
,

λ = 8 :

(
3 −3

−1 1

) (
x1 x2

)
=

(
0
0

)
⇒ Ker(8I − A) = span

[(
1
1

)]
.

Thus the diagonalizing transformation S is given as follows:

A

(
3 1

−1 1

)
︸ ︷︷ ︸

S

=

(
3 1

−1 1

)
︸ ︷︷ ︸

S

(
4 0
0 8

)
.



11. Find all eigenvalues (real and complex) of the matrix

A =

 0 0 1
1 0 0

−9 −9 −1

 .

Why or why not is it possible to diagonalize the matrix A? Solution:
The eigenvalues of A are the zeros of the cubic equation det(λI−A) = 0.
In fact,

det(λI − A) = det

 λ 0 −1
−1 λ 0
9 9 λ + 1

 = λ

∣∣∣∣λ 0
9 λ + 1

∣∣∣∣− ∣∣∣∣−1 λ
9 9

∣∣∣∣
= λ2(λ + 1) + (9 + 9λ) = (λ + 1)(λ2 + 9).

Thus the eigenvalues of A are −1 and ±3i. Since the eigenvalues of A
are distinct, the matrix A is diagonalizable.

12. Find the solution of the discrete dynamical system

x(n + 1) = Ax(n), n = 0, 1, 2, 3, . . . ,

where

A =

(
3 4
4 −3

)
, x(0) =

(
1
0

)
.

Solution: The eigenvalues of A are the zeros of the quadratic equation

0 = det(λI−A) = det

(
λ− 3 −4
−4 λ + 3

)
= (λ−3)(λ+3)−16 = λ2−25,

hence λ = ±5. The eigenvectors are to be found as follows:

λ = −5 :

(
−8 −4
−4 −2

) (
x1

x2

)
=

(
0
0

)
⇒ Ker(−5I−A) = span

[(
1

−2

)]
,

λ = 5 :

(
2 −4
−4 8

) (
x1

x2

)
=

(
0
0

)
⇒ Ker(5I − A) = span

[(
2
1

)]
.

Now let us x(0) as a linear combination of the eigenvectors:

x(0) =

(
1
0

)
=

1

5

(
1

−2

)
+

2

5

(
2
1

)
.

Consequently,

x(n) =
1

5
An

(
1

−2

)
+

2

5
An

(
2
1

)
=

1

5
(−5)n

(
1

−2

)
+

2

5
5n

(
2
1

)
.


