Let $\left\{\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{v}}_{4}\right\}$ be a basis of a four dimensional vector space V. To construct an orthonormal basis of V, we proceed as follows:

$$
\begin{align*}
\overrightarrow{\boldsymbol{w}}_{1} & =\overrightarrow{\boldsymbol{v}}_{1} \tag{1a}\\
\overrightarrow{\boldsymbol{u}}_{1} & =\frac{\overrightarrow{\boldsymbol{w}}_{1}}{\left\|\overrightarrow{\boldsymbol{w}}_{1}\right\|}, \tag{1b}\\
\overrightarrow{\boldsymbol{w}}_{2} & =\overrightarrow{\boldsymbol{v}}_{2}-\left(\overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}, \tag{1c}\\
\overrightarrow{\boldsymbol{u}}_{2} & =\frac{\overrightarrow{\boldsymbol{w}}_{2}}{\left\|\overrightarrow{\boldsymbol{w}}_{2}\right\|}, \tag{1d}\\
\overrightarrow{\boldsymbol{w}}_{3} & =\overrightarrow{\boldsymbol{v}}_{3}-\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}-\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{2}\right) \overrightarrow{\boldsymbol{u}}_{2}, \tag{1e}\\
\overrightarrow{\boldsymbol{u}}_{3} & =\frac{\overrightarrow{\boldsymbol{w}}_{3}}{\left\|\overrightarrow{\boldsymbol{w}}_{3}\right\|}, \tag{1f}\\
\overrightarrow{\boldsymbol{w}}_{4} & =\overrightarrow{\boldsymbol{v}}_{4}-\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}-\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{2}\right) \overrightarrow{\boldsymbol{u}}_{2}-\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{3}\right) \overrightarrow{\boldsymbol{u}}_{3}, \tag{1g}\\
\overrightarrow{\boldsymbol{u}}_{4} & =\frac{\overrightarrow{\boldsymbol{w}}_{4}}{\left\|\overrightarrow{\boldsymbol{w}}_{4}\right\|} . \tag{1h}
\end{align*}
$$

Then $\left\{\overrightarrow{\boldsymbol{u}}_{1}, \overrightarrow{\boldsymbol{u}}_{2}, \overrightarrow{\boldsymbol{u}}_{3}, \overrightarrow{\boldsymbol{u}}_{4}\right\}$ is an orthonormal basis of V.
Let us now use (1a) and (1b) to write

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}_{1}=\left\|\overrightarrow{\boldsymbol{w}}_{1}\right\| \overrightarrow{\boldsymbol{u}}_{1} . \tag{2a}
\end{equation*}
$$

Then we use (1c) and (1d) to write

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}_{2}=\left\|\overrightarrow{\boldsymbol{w}}_{2}\right\| \overrightarrow{\boldsymbol{u}}_{2}+\left(\overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1} . \tag{2b}
\end{equation*}
$$

Next we use (1e) and (1f) to write

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}_{3}=\left\|\overrightarrow{\boldsymbol{w}}_{3}\right\| \overrightarrow{\boldsymbol{u}}_{3}+\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}+\left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{2}\right) \overrightarrow{\boldsymbol{u}}_{2} . \tag{2c}
\end{equation*}
$$

Finally, we use (1g) and (1h) to write

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}_{4}=\left\|\overrightarrow{\boldsymbol{w}}_{4}\right\| \overrightarrow{\boldsymbol{u}}_{4}+\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{1}\right) \overrightarrow{\boldsymbol{u}}_{1}+\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{2}\right) \overrightarrow{\boldsymbol{u}}_{2}+\left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{3}\right) \overrightarrow{\boldsymbol{u}}_{3} . \tag{2d}
\end{equation*}
$$

Let us now write (2a)-(2d) in matrix form by lining up the vectors in either basis as columns of a matrix. We get

$$
\underbrace{\left(\overrightarrow{\boldsymbol{v}}_{1} \mid \overrightarrow{\boldsymbol{v}}_{2}: \overrightarrow{\boldsymbol{v}}_{3}: \overrightarrow{\boldsymbol{v}}_{4}\right)}_{\text {given matrix } M}=\underbrace{\left(\overrightarrow{\boldsymbol{u}}_{1}: \overrightarrow{\boldsymbol{u}}_{2}: \overrightarrow{\boldsymbol{u}}_{3}: \overrightarrow{\boldsymbol{u}}_{4}\right)}_{\text {orthogonal matrix } Q} \underbrace{\left(\begin{array}{cccc}
\left\|\overrightarrow{\boldsymbol{w}}_{1}\right\| & \left(\overrightarrow{\boldsymbol{v}}_{2}, \overrightarrow{\boldsymbol{u}}_{1}\right) & \left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{1}\right) & \left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{1}\right) \tag{3}\\
0 & \left\|\overrightarrow{\boldsymbol{w}}_{2}\right\| & \left(\overrightarrow{\boldsymbol{v}}_{3}, \overrightarrow{\boldsymbol{u}}_{2}\right) & \left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{2}\right) \\
0 & 0 & \left\|\overrightarrow{\boldsymbol{w}}_{3}\right\| & \left(\overrightarrow{\boldsymbol{v}}_{4}, \overrightarrow{\boldsymbol{u}}_{3}\right) \\
0 & 0 & 0 & \left\|\overrightarrow{\boldsymbol{w}}_{4}\right\|
\end{array}\right)}_{\text {upper triangular matrix } R} .
$$

In other words, the matrix M constructed from the given basis vectors has been factorized in the form

$$
M=Q R
$$

where Q is an orthogonal matrix and R is an upper triangular matrix with positive diagonal elements. Such a factorization is called a $Q R$-factorization of M. Once Q is known (by lining up the orthonormal basis vectors as columns), the upper triangular factor R is easily constructed:

$$
R=Q^{T} M
$$

where Q^{T} stands for the transpose of $Q .{ }^{1} \quad Q R$-factorizations play an important role in solving linear systems numerically, because they allow one to reduce an arbitrary linear system to a linear system with an orthogonal matrix followed by an upper triangular system.

[^0]
[^0]: ${ }^{1}$ Note that $Q^{T} Q$ is the identity matrix, because the columns of Q form an orthonormal system

