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On the Location of the Discrete Eigenvalues for Defocusing
Zakharov-Shabat Systems having Potentials with

Nonvanishing Boundary Conditions
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Abstract. In this article we prove that the discrete eigenvalues of the
Zakharov-Shabat system belong to certain neighborhoods of the endpoints
of the spectral gap and the discrete eigenvalue of the free Hamiltonian.

1. Introduction

The nonlinear Schrödinger (NLS) equation is a well-known physically and math-
ematically significant nonlinear evolution equation extensively studied for over forty
years. For example, the NLS equation has been derived in the modeling of ocean
water waves [2,21], Bose-Einstein condensation [18], and optical fibers [10,11].

In this work we consider the defocusing NLS equation, i.e.,

iqt + qxx − 2|q|2q = 0 ,(1.1)

[subscripts x and t denote partial differentiation throughout] with nonzero boundary
conditions (NZBCs)

q(x, t) → q±(t) = q0e
2iq20t+iθ± , as x → ±∞,(1.2)

where i denotes the complex unit, q0 > 0 and 0 ≤ θ± < 2π are arbitrary constants.
It is well-known that Eq. (1.1) is associated to the so-called Zakharov-Shabat (ZS)
system:

(1.3)
∂X

∂x
(x, k) = (−ikσ3 +Q(x))X(x, k), x ∈ R,

where

(1.4) σ3 =

(
1 0
0 −1

)
, Q(x) =

(
0 q(x)

q∗(x) 0

)
,

q(x) is the potential, k is a complex spectral parameter and the asterisk denotes
the complex conjugate, by means of the inverse scattering transform.

Recently, the defocusing NLS (1.1) with NZBCs has been the subject of renewed
interest because of its applications to Bose-Einstein condensates [8,9] and dispersive
shock waves in optical fibers [19]. This justifies our effort to investigate some
questions connected with this subject. In particular, we focus our attention on some
aspects which arise when the Inverse Scattering Transform (IST) (see [1,2,20] for
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a general review of this method) is applied to the equation (1.1) with NZBCs (1.2).
In fact, the IST for (1.1) with NZBCs (see [3, 4, 7, 12, 13, 17, 22]) is much more
complicated than for (1.1) with decaying potentials, in particular with regard to
the analyticity properties of the eigenfunctions of the scattering problem (1.3) and
the corresponding scattering data. A step forward in that direction was recently
made in [6] where it was proved that the direct scattering problem is well defined
for potentials q such that q−q± belongs to the functional class L1,2(R±) (L1,p(R±)
consists of all functions f(x) satisfying

∫
R
dx (1 + |x|)p |f(x)| < ∞). For this reason,

we will assume that q − q± ∈ L1,2(R±).
It is also worthwhile to study if an area theorem for the defocusing NLS (1.1)

with NZBCs can be proved, which means establishing existence and location of
discrete eigenvalues (see Section 2 for the definition of a discrete eigenvalue) of the
scattering problem (1.3) as a function of the area of the initial profile of the solution
of (1.1). It is well known that for the focusing NLS with vanishing boundary
conditions such a result already exists [2, 14–16]: in fact, there are no discrete
eigenvalues of (1.3) if the L1-norm of the potential is smaller than π/2. Only
recently [5], the non existence of an analogous result for equation (1.1) with NZBCs
has been proved. In [5], the authors showed that no area theorem is possible for
the defocusing NLS with NZBCs by providing explicit examples of box-type initial
conditions where at least one discrete eigenvalue exists. In the present paper, we
analyze a class of potentials more general than that considered in [5] (we only
require that q − q± ∈ L1,2(R±)) and establish the conditions (equations (4.8) and
(4.13) in Section 4) which the potentials have to satisfy in order that a particular,
but well specified subset of (−q0, q0) does not contain any discrete eigenvalue.

The paper is organized as follows. In Section 2 we review the basic facts on
the direct scattering problem for (1.1) with NZBCs (1.2) and discuss an explicit
example (different from that considered in [5]) which establishes the presence of at
least one discrete eigenvalue in (−q0, q0). In Section 3 we explicitly construct the
resolvent of the free hamiltonian of the spectral problem originating from (1.3) and,
finally, in Section 4, adapting the technique used in the vanishing case in [14–16],
we state our main results, namely Theorems 4.3 and 4.4.

2. Preliminaries

In this section we study the direct scattering problem for (1.3) by using the
same notations adopted in [6] to which we refer the interested reader for details.
Moreover, we discuss a significant example which shows that in the spectral gap
(−q0, q0) there may exist a discrete eigenvalue if q+ �= q−.

To study the direct scattering problem of (1.1) with NZBCs (1.2), a new spec-
tral parameter

λ =
√
k2 − q20

is introduced which is a conformal mapping from the Riemann k-surface K onto
the Riemann λ-surface Λ. Here K consists of two sheets, K+ and K

−, which both
coincide with the complex k-plane cut along the semilines Σ = (−∞,−q0]∪[q0,+∞),
where its edges are glued together in such a way that λ(k) is continuous throughout
the cut. The Riemann surface Λ is the complex λ-plane consisting of the upper
half-complex plane Λ+ and the lower half complex plane Λ− glued together along
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the real λ-line. The transformation k �→ λ maps K
± onto Λ±, the cut Σ onto the

real λ-line, and the points ±q0 to zero. Also, {λ+ k, λ− k} ⊂ Λ± for any k ∈ K
±.

For later convenience, we write (1.3) in the form

∂X

∂x
(x, k) = A±(k)X(x, k) + (Q(x)−Q±)X(x, k),(2.1)

where

A±(k) = −ikσ3 +Q± =

(
−ik q±
q∗± ik

)
, Q± =

(
0 q±
q∗± 0

)
.(2.2)

Then (1.3) and (2.1) can also be written in the equivalent form

(2.3)
∂X

∂x
(x, k) = A(x, k)X(x, k) + (Q(x)−Qf (x))X(x, k),

where,

(2.4) A(x, k) = θ(x)A+(k) + θ(−x)A−(k), Qf (x) = θ(x)Q+ + θ(−x)Q−,

and θ(x) denotes the Heaviside function defined as θ(x) = 1 for x ≥ 0 and θ(x) = 0
for x < 0. We associate to the ZS system (2.3) the Hamiltonian operator

H = iσ3(d/dx−Q)(2.5)

which is selfadjoint on the orthogonal direct sum of two copies of L2(R). It is also
convenient to introduce the free Hamiltonian

Hf = iσ3

(
d

dx
−Qf

)
.(2.6)

For k ∈ Σ, we define the fundamental eigensolutions Ψ̃(x, k) and Φ̃(x, k) as those
square matrix solutions to (1.3) satisfying

Ψ̃(x, k) = exA+(k)[I2 + o(1)], x → +∞,(2.7a)

Φ̃(x, k) = exA−(k)[I2 + o(1)], x → −∞.(2.7b)

We can prove their existence, for k ∈ Σ, as the unique solutions of the Volterra
integral equations [6, Prop. 1]

Ψ̃(x, k) = G(x, 0; k)−
∫ ∞

x

dy G(x, y; k)[Q(y)−Qf (y)]Ψ̃(y, k),(2.8a)

Φ̃(x, k) = G(x, 0; k) +
∫ x

−∞
dy G(x, y; k)[Q(y)−Qf (y)]Φ̃(y, k).(2.8b)

Here the fundamental matrix G(x, y; k) is given by

(2.9) G(x, y; k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exA+(k)e−yA+(k), x, y ≥ 0,

exA+(k)e−yA−(k), x ≥ 0 ≥ y,

exA−(k)e−yA+(k), y ≥ 0 ≥ x,

exA−(k)e−yA−(k), x, y ≤ 0.

In fact, Eqs. (2.8) are uniquely solvable under the condition q − q± ∈ L1(R±) if
±q0 �= k ∈ Σ; they are uniquely solvable under the condition (1 + |x|2)[q − q±] ∈
L1(R±) if k = ±q0.
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Let us now introduce the Jost solutions (as column vector solutions to (2.1)
in terms of the fundamental eigensolutions) and the “transition scattering” matrix
S(k). Hence, we define the eigenvector matrices:

(2.10) W±(k) =

(
1 −iq±

λ+k
iq∗±
λ+k 1

)
,

where detW±(k) = 2λ/(λ+ k) and A±(k)W±(k) = W±(k)diag(−iλ, iλ). The Jost
solutions from the right and the left, respectively, are defined as the columns of

Ψ̃(x, k)W+(k) =
(
ψ̄(x, k) ψ(x, k)

)
, Φ̃(x, k)W−(k) =

(
φ(x, k) φ̄(x, k)

)
,(2.11)

and a detailed study of their analyticity properties can be found in [6, Prop. 3].

Since Ψ̃(x, k) and Φ̃(x, k) are square matrix solutions of the homogeneous first order
system (1.3), we have

(2.12) Ψ̃(x, k) = Φ̃(x, k)Al(k), Φ̃(x, k) = Ψ̃(x, k)Ar(k),

where Al(k) and Ar(k) are called the transition coefficient matrices whose expres-
sions are given by

Al(k) = I2 −
∫ ∞

−∞
dy G(0, y; k)[Q(y)−Qf (y)]Ψ̃(y, k),(2.13a)

Ar(k) = I2 +

∫ ∞

−∞
dy G(0, y; k)[Q(y)−Qf (y)]Φ̃(y, k).(2.13b)

As a result of (2.11) and (2.12), we get(
φ(x, k) φ̄(x, k)

)
=
(
ψ̄(x, k) ψ(x, k)

)
S(k) ,(2.14a) (

ψ̄(x, k) ψ(x, k)
)
=
(
φ(x, k) φ̄(x, k)

)
S̄(k) ,(2.14b)

where [6]

(2.15) S(k) = W−1
+ (k)Ar(k)W−(k) =

(
a(k) b̄(k)
b(k) ā(k)

)
,

and S̄(k) = W−1
− (k)Al(k)W+(k) = S−1(k). The analyticity and continuity prop-

erties of the scattering coefficients a(k), b̄(k), b(k), ā(k) follow from the analyticity
and continuity properties of the Jost solutions using their Wronskian representa-
tions [6]. It is well known that the scattering data associated to the ZS system (1.3)
are (see [1,2,20,22]): the reflection coefficient ρ(k) = b(k)/a(k), the zeros of a(k)
for k ∈ K \ Σ (the so-called discrete eigenvalues) and a suitable set of constants
associated with the discrete eigenvalues known as norming constants. However, it
is important to remark that for Eq. (1.1) with NZBCs, the discrete eigenvalues
belong to the spectral gap (−q0, q0) and are simple (proved in [7]) and, under the
hypothesis q − q± ∈ L1,4(R±), are finite in number (established in [6]).

We conclude this section analyzing an explicit example which confirms the
results obtained in [5, Sec. 4]

Example 2.1 (Free Hamiltonian). Let us compute the discrete eigenvalues
of the free Hamiltonian introduced in (2.6) [which corresponds to assume Q(x) =
Qf (x) in the ZS system (1.3)]. In that case from (2.13) we have Al(k) = Ar(k) = I2
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[I2 denotes the 2× 2 identity matrix], and by using (2.12) we get

(2.16) Ψ̃(x, k) = Φ̃(x, k) =

{
exA+(k), for x > 0 ,

exA−(k), for x < 0 .

From (2.16) and taking into account (2.15) and (2.10), we arrive at

S(k) =

(
a(k) b̄(k)
b(k) ā(k)

)
= W−1

+ (k)W−(k) =
λ+ k

2λ

⎛
⎜⎜⎝
1−

q+q
∗
−

(λ+ k)2
i
(q+ − q−)

λ+ k

i
(q∗− − q∗+)

λ+ k
1−

q−q
∗
+

(λ+ k)2

⎞
⎟⎟⎠ .

Putting λ = i
 with 
 ∈ (0, q0), from the preceding equation we obtain:

a(k) =
(k + i�)2 − q20e

i(θ+−θ−)

2i�(k + i�)
=

k2 − �2 − q20 cos(θ+ − θ−) + i
(
2k�− q20 sin(θ+ − θ−)

)

2i�(k + i�)
.

As a result a(k) = 0 if and only if

(2.17) cos(θ+ − θ−) =
k2 − 
2

q20
, sin(θ+ − θ−) =

2k


q20
.

Equation (2.17) has a unique solution k0 ∈ (−q0, q0), unless q+ = q−. This eigen-
value k0 = 0 iff θ+ − θ− is an odd multiple of π.

From now on, we denote with k0 the unique discrete eigenvalue of the free
Hamiltonian operator associated to the scattering problem (1.3) and computed in
the example above.

3. Resolvent of the free Hamiltonian

In this section we calculate the resolvent (k − Hf )
−1 of the free Hamiltonian

Hf . The result obtained will be used in the next section to determine the location
of the discrete eigenvalues.

Let us compute the resolvent (k − Hf )
−1 of the free Hamiltonian for k /∈

σ(Hf ) = Σ ∪ {k0} if q+ �= q− [or k /∈ σ(Hf ) = Σ if q+ = q−]. Letting F (x)
be a column vector function in L2(R)2 = L2(R) ⊕ L2(R), we seek the unique
vector function Ψ(k, x) in L2(R)2 such that HfΨ = kΨ − F. Writing Ψ(x, k) =
W (x, k)ψ(x, k), where W (x, k) = W+(k)θ(x) +W−(k)θ(−x), we get for 0 �= x ∈ R

(3.1) ψ′(x, k) = −iλσ3ψ(x, k) + iW−1(x, k)σ3F (x),

where we have used that A(x, k)W (x, k) = −iλW (x, k)σ3.

Theorem 3.1. Let q+ �= q− and k ∈ K
+. Then for F ∈ L2(R)2 and k /∈

Σ ∪ {k0} we have

(3.2) [(k −Hf )
−1F ](x) =

∫ ∞

−∞
dy [Kf (x, y; k) +Kf1(x; k)Kf2(y; k)]F (y),
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where Kf (x, y; k) is given by

Kf (x, y; k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i eiλ(y−x)W+(k)

(
1 0

0 0

)
σ3W

−1
+ (k)σ3, y > x > 0,

−i eiλ(x−y)W+(k)

(
0 0

0 1

)
σ3W

−1
+ (k)σ3, x > y > 0,

−i eiλ(y−x)W−(k)

(
1 0

0 0

)
σ3W

−1
− (k)σ3, 0 > y > x,

−i eiλ(x−y)W−(k)

(
0 0

0 1

)
σ3W

−1
− (k)σ3, 0 > x > y,

0, xy < 0,

(3.3a)

Kf1(x; k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
eiλx

(
0 0

0 1

)
W−1

+ (k), x > 0,

e−iλx

(
1 0

0 0

)
W−1

− (k), x < 0,

(3.3b)

Kf2(y; k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−i eiλyZ−1(k)

(
1 0

0 0

)
W−1

+ (k)σ3, y > 0,

i e−iλyZ−1(k)

(
0 0

0 1

)
W−1

− (k)σ3, y < 0,

(3.3c)

Z(k) =

(
1 0
0 0

)
W−1

+ (k) +

(
0 0
0 1

)
W−1

− (k) =
1

2λ

(
λ+ k iqr
−iq∗l λ+ k

)
.(3.3d)

If q+ = q− �= 0, then for k /∈ Σ

(3.4) [(k −Hf )
−1F ](x) = −i

∫ ∞

−∞
dy eiλ|x−y|W+(k)E(y − x)W−1

+ (k)σ3F (y),

where

E(w) = θ(w)

(
1 0
0 0

)
+ θ(−w)

(
0 0
0 −1

)
.

A similar result can be proved also if k ∈ K
− (or λ ∈ Λ−).

Proof. Let us assume that q+ �= q−. Then (3.1) implies the identity

∂

∂y

{
e−iλ(x−y)σ3ψ(y, k)

}
= i e−iλ(x−y)σ3W−1(y, k)σ3F (y),

where 0 �= y ∈ R and k /∈ Σ. Therefore, for 0 �= y ∈ R and k /∈ Σ we obtain

∂

∂y

{
eiλ(y−x)

(
1 0
0 0

)
ψ(y, k)

}
= i eiλ(y−x)

(
1 0
0 0

)
W−1(y, k)σ3F (y),(3.5a)

∂

∂y

{
eiλ(x−y)

(
0 0
0 1

)
ψ(y, k)

}
= i eiλ(x−y)

(
0 0
0 1

)
W−1(y, k)σ3F (y).(3.5b)

Let k belong to K
+ [or λ ∈ Λ+] and let us integrate (3.5a) with respect to y ∈

(x,+∞) for x ≥ 0 and with respect to y ∈ (x, 0) for x < 0 and (3.5b) with respect
to y ∈ (−∞, x) for x ≤ 0 and with respect to y ∈ (0, x) for x > 0. Putting together
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the results obtained in this way for x > 0 and x < 0, respectively, we obtain [Ψ(x, k)
is continuous in x = 0 but ψ(x, k) is not]

Ψ(x, k) = −iW+(k)

∫ ∞

x

dy eiλ(y−x)

(
1 0
0 0

)
W−1

+ (k)σ3F (y)

+ iW+(k)

∫ x

0

dy eiλ(x−y)

(
0 0
0 1

)
W−1

+ (k)σ3F (y)

+ eiλxW+(k)

(
0 0
0 1

)
W−1

+ (k)Ψ(0, k) for x > 0,(3.6a)

= iW−(k)

∫ x

−∞
dy eiλ(x−y)

(
0 0
0 1

)
W−1

− (k)σ3F (y)

− iW−(k)

∫ 0

x

dy eiλ(y−x)

(
1 0
0 0

)
W−1

− (k)σ3F (y)

+ e−iλxW−(k)

(
1 0
0 0

)
W−1

− (k)Ψ(0, k) for x < 0,(3.6b)

= Z−1(k)

[
−i

∫ ∞

0

dy eiλy
(
1 0
0 0

)
W−1

+ (k)σ3F (y)

+ i

∫ 0

−∞
dy e−iλy

(
0 0
0 1

)
W−1

− (k)σ3F (y)

]
for x = 0,(3.6c)

provided the matrix Z(k) is nonsingular. Putting k ∈ (−q0, q0) and λ = i
, we get

(3.7) detZ(k) =

2 − k2 + q20 cos(θ+ − θ−) + i[−2k
+ q20 sin(θ+ − θ−)]

4
2
,

which can only vanish if (2.17) is true. In other words, in the case q+ �= q− we have
to exclude the discrete eigenvalue k = k0.

Let us now consider the case q+ = q−. Writing Ψ(x, k) = W+(k)ψ(x, k) for the
left-hand side of (3.4), we verify that it satisfies

Ψ′(x, k) = A+(k)Ψ(x, k) + iσ3F (x).

and formula (3.4) follows from (3.3a)-(3.3d) if one takes into account that q+ = q−
implies W+ = W− and this completes the proof. �

We underline that:

a. If q+ �= q−, the resolvent operator (k −Hf )
−1 is the sum of the integral

operator with integral kernelKf (x, y; k) for k /∈ Σ and a rank two operator
for k /∈ Σ ∪ {k0};

b. If q+ = q− the resolvent operator (k−Hf )
−1 is the integral operator with

integral kernel −i eiλ|x−y|W+(k)E(y − x)W−1
+ (k)σ3.

4. Location of the discrete eigenvalues

The aim of this section is to characterize the location of the discrete eigenvalues
in (−q0, q0). In fact, Example 2.1 shows that if q− �= q+ at least one such eigenvalue
exists. We arrive at our main results mimicking the proofs given by Klaus et al. in
[14–16] for focusing NLS with decaying potential. We need the following technical
results, i.e., Theorems 4.1 and 4.2 below.
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Theorem 4.1. Let W (1)(x) and W (2)(x) be two 2 × 2 matrices whose entries
belong to L2(R), and let k /∈ Σ. Then the integral operator on L2(R)2 with integral
kernel

W (1)(x)Kf (x, y; k)W
(2)(y)

is Hilbert-Schmidt, also if we take the limit as k approaches an interior point of Σ.

Proof. The squared Hilbert-Schmidt norm of W (1)(k−Hf )
−1W (2) minus the

rank two contribution is given by∫ ∞

−∞
dx

∫ ∞

−∞
dy ‖W (1)(x)‖2HS‖W (2)(y)‖2HS |Kf (x, y; k)|2.

As the exponential factor eiλ|x−y| in the expression for Kf (x, y; k) is bounded above
by 1 in absolute value, we get the following upper bound for the squared Hilbert-
Schmidt norm of W (1)(k −Hf )

−1W (2) minus the rank two contribution:

(4.1)
k2

λ2

(∫ ∞

−∞
dx ‖W (1)(x)‖2HS

)(∫ ∞

−∞
dy ‖W (2)(y)‖2HS

)
,

which, for each ε > 0, is uniformly bounded in k satisfying
√
|k2 − q20 | ≥ ε. �

The following theorem is immediate as a consequence of the definition of the
Hilbert-Schmidt norm. In the norm estimate it does not matter which unitarily
equivalent matrix norm is taken, because Kf1(x; k) and Kf2(y; k) both have rank
one.

Theorem 4.2. Let W (1)(x) and W (2)(x) be two 2 × 2 matrices whose entries
belong to L2(R), and let k /∈ Σ. Then the integral operator on L2(R)2 with integral
kernel

W (1)(x)Kf1(x; k)Kf2(y; k)W
(2)(y)

is rank two and its norm coincides with

(4.2)

[∫ ∞

−∞
dx
∥∥∥W (1)(x)Kf1(x; k)

∥∥∥2]1/2 [∫ ∞

−∞
dy
∥∥∥Kf2(y; k)W

(2)(y)
∥∥∥2]1/2 .

It follows from [14, Eq. (4.10)] and [16, proof of Thm. 4.2] that the norm of

the integral operator on L2(R) with kernel e−τ(y−x)θ(y−x)
√
m(x)m(y) is less than

(2/π)‖m‖1. To generalize this result to the nonvanishing case, we start with the
polar decomposition

Q(x)−Qf (x) =

(
0 σ(x)

σ(x)∗ 0

)√
|q(x)− qf (x)|I2 ·

√
|q(x)− qf (x)|I2

= Uδ(x)|Δ(x)|1/2|Δ(x)|1/2,(4.3)

where

(4.4) qf (x) = (q(x)− q−)θ(−x) + (q(x)− q+)θ(x), Δ(x) = |q(x)− qf (x)|I2,

|σ(x)| = 1, and hence Uδ(x) =

(
0 σ(x)

σ(x)∗ 0

)
is a unitary matrix. For k /∈ Σ we

now define

(4.5) W(k) = I + |Δ|1/2(k −Hf )
−1Uδ|Δ|1/2.
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Then, for k /∈ Σ [and for k �= k0 if q+ �= q−], W(k)−I is a Hilbert-Schmidt operator
on L2(R)2 with integral kernel{

|Δ(x)|1/2[Kf (x, y; k) +Kf1(x; k)Kf2(y; k)]Uδ(y)|Δ(y)|1/2, q+ �= q−,

−i eiλ|x−y|W+(k)E(y − x)W−1
+ (k)σ3, q+ = q−.

(4.6)

It is now verified that1

(4.7) (k −H)−1 − (k −Hf )
−1 = −(k −Hf )

−1Uδ|Δ|1/2W−1(k)|Δ|1/2(k −Hf )
−1

provided W(k) is invertible. The right-hand side of this identity has a finite limit as
k approaches the interior points of Σ, provided W(k) is invertible.2 For k0 �= k /∈ Σ,
the points of noninvertibility of W(k) are exactly the discrete eigenvalues.

Our first result is as follows:

Theorem 4.3. Let us consider the case q+ �= q−. Then, for k ∈ (−q0, q0),
W(k) is invertible if the right-hand side of equation (4.8)

(4.8) ‖W(k)− I‖ ≤ ‖q − qf‖1
∣∣∣∣ k(k + λ)

2λ2 detZ(k)

∣∣∣∣
{
2

π
+

√∣∣∣∣k(k + λ)

2λ2

∣∣∣∣
}
.

is strictly less than one. As a consequence, the discrete eigenvalues belong to these
neighborhoods of q0, −q0, and k0 within (−q0, q0) for which the right-hand side of
(4.8) is at least one.

Proof. As already noted at the end of Section 3, when q+ �= q− the resol-
vent operator (k − Hf )

−1 is the sum of the integral operator with integral kernel
Kf (x, y; k) for k /∈ Σ and a rank two operator for k /∈ Σ ∪ {k0}. The idea is to
estimate the integral kernel Kf (x, y; k) by using (4.1) and the rank two contribution

through (4.2). To use equations (4.1) and (4.2), we introduce W (1)(x) and W (2)(y)
as

W (1)(x) = |Δ(x)|1/2 =
√
|q(x)− qf (x)| I2,(4.9a)

W (2)(y) = Uδ(y)|Δ(y)|1/2 =
√
|q(y)− qf (y)|

(
0 σ(y)

σ(y)∗ 0

)
.(4.9b)

First of all, it is easily verified that W (1)(x)Kf1(x; k) has as its (spectral) norm

(4.10) e−|x|Im λ
√
|q(x)− qf (x)|

√∣∣∣∣k(k + λ)

2λ2

∣∣∣∣.
By straightforward calculations, we also get the (spectral) norm ofKf2(y; k)W

(2)(y)

(4.11) e−|y|Im λ
√
|q(y)− qf (y)|

∣∣∣∣ k(k + λ)

2λ2 detZ(k)

∣∣∣∣ ,
and, finally,

(4.12)

∣∣∣∣Kf (x, y; k)

eiλ|x−y|

∣∣∣∣ =
∣∣∣∣kλ
∣∣∣∣ .

1By using eqs. (4.3) and (4.5) and that kI−H = kI−Hf +Q−Qf , long but straightforward
calculations show that the right and the left hand side of the equation obtained by multiplying
both member of (4.7) by kI −H coincide and then identity (4.7) holds.

2For k an interior point of Σ, the points of noninvertibility of W(k) would be the spectral
singularities, but they are known not to exist [6].
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Applying (4.10), (4.11) and (4.12) to (4.1), it is easily verified that the integral

operator on L2(R) has the integral kernel in the form e−τ(y−x)θ(y−x)
√
m(x)m(y)

which has, for τ ≥ 0, norm at most (2/π)‖m‖1 (as stated above). Thus, W(k)− I
minus the rank two contribution has norm at most

2

π
‖q − qf‖1

∣∣∣∣ k(k + λ)

2λ2 detZ(k)

∣∣∣∣ .
By using (4.2), we also verify that the rank two contribution to W(k)− I has norm
at most

‖q − qf‖1

√∣∣∣∣k(k + λ)

2λ2

∣∣∣∣
∣∣∣∣ k(k + λ)

2λ2 detZ(k)

∣∣∣∣ .
As a result,

‖W(k)− I‖ ≤ ‖q − qf‖1
∣∣∣∣ k(k + λ)

2λ2 detZ(k)

∣∣∣∣
{
2

π
+

√∣∣∣∣k(k + λ)

2λ2

∣∣∣∣
}
,

which completes the proof. �
The next theorem sheds light on the case q+ = q−.

Theorem 4.4. Let q+ = q−. Then, for k ∈ (−q0, q0), W(k) is invertible if the
right-hand side of equation (4.13)

(4.13) ‖W(k)− I‖ ≤ 2

π
‖q − qf‖1

∣∣∣∣kλ
∣∣∣∣ .

is strictly less than one. As a consequence, the discrete eigenvalues belong to these
neighborhoods of q0, −q0 for which the right-hand side of (4.13) is at least one.

Proof. Equation (4.13) immediately follows from the second of (4.6) taking
into account (4.10), (4.11) and (4.12). �

We remark that these results agree with those found in [5, Sec. 4].
Finally, for q+ �= q− we prove the existence of a discrete eigenvalue in the

spectral gap if ‖q − qf‖1 is sufficiently small.

Theorem 4.5. Let q+ �= q− and let (k0 − ε, k0 + ε) ⊆ (−q0, q0). Put Cε =
max |k−k0|=ε

(
‖(k −Hf )

−1‖2‖W−1(k)‖
)
. Then for

‖q − qf‖1 <
1

εCε

there exists a simple discrete eigenvalue k ∈ (k0 − ε, k0 + ε).

Proof. Let Γ(ε) be the positively oriented circle with center k0 and radius ε.

Using (4.7) and ‖|Δ| 12 ‖2 = ‖q − qf‖1 (where |Δ| is defined by (4.4)), we estimate∥∥∥∥∥ 1

2πi

∫
Γ(ε)

dk
{
(k −H)−1 − (k −Hf )

−1
}∥∥∥∥∥ ≤ ε‖q − qf‖1Cε < 1

whenever ‖q − qf‖1 <
1

εCε
. Now recall that P = 1

2πi

∫
Γ(ε)

dk(k −H)−1 and Pf =

1
2πi

∫
Γ(ε)

dk(k−Hf )
−1 are the orthogonal projections onto the combined eigenvector

subspaces of H and Hf corresponding to the eigenvalues in (k0 − ε, k0 + ε). We
have proved above that

‖P − Pf‖ < 1.
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Since I + P − Pf and I − P + Pf are nonsingular and

(I + P − Pf )Pf = PPf = P (I − P + Pf ) ,

the projections P and Pf have the same rank, which equals +1. This completes the
proof. �
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