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Abstract—The paper deals with the optimal control of switched piece- tween autonomous linear dynamics of the type A;x, where
wise linear autonomous systems, where the objective is that of minimizing tha sequenceAj, j=1,---,nis known. We also generalize

a performance index over an infinite time horizon. We assume that the this f Kb . that wh t tirn itch
switching sequence has a finite length and is pre—assigned, while the un- IS Tramework by assuming that whenever at timea switc

known switching times are the optimization parameters. We also assume from A; to A, occurs, the state should jump frantr;”) to
that at each switch a jump in the state space may occur and that a cost may w(7'+) — MjiE(T-_)
J

be associated to each switch. Ié eneral, assume that the initial and final times@qre= 0
The optimal control for this class of systems takes the form of a state 9 ! 3

feedback, i.e., it is possible to identify a region of the state space such thataNd 7,+1 = oo and thatk out of then allowed switches oc-
an optimal switch should occur if and only if the present state belongs to cur (i.e., occur in a finite amount of time). Given a choice of
this region. We show how such a region can be computed with a numerical switching times

procedure and show that, in the particular case in which the switching costs
is null, the region is homogeneous.

O=m0<m < <7 <Tpg1 ="+ =Ty = Tpp1 = +0
. INTRODUCTION we consider a performance index of the form:
[ [ [ - k
Switched systems are a particular class of hybrid systems con F(ri,- ) = fooo 27 (H)Qu(t) dt + S H,

sisting of a number of subsystems (that may also be infinite)

and a switching law that indicates the active subsystem at eagh the performance index is composed of a cost associated to
time instant. Examples of switched systems may be found e continuous evolution and of a cost associated to the switches.
many application fields, such as chemical processes, transpotiasarticular,

tion systems, electrical circuits, and so on. . Q is a positive definite matrix that weights the continuous

The problem of determining optimal control laws for thistate;
class of hybrid systems has been widely investigated in the Iasf; is the cost of the —th switch.
years and many results can be found in the control and comput@e control problem we investigate consists in determining the
science literature [2], [4], [5], [7], [11]. Many of these worksoptimal switching times so as to minimize the performance in-
propose control procedures that are based on the discretizatier F.
of state space into grids and use search methods to find optimalve make the following assumptions:
open-loop solutions. Approaches of this kind may often revesl Each matrixA, is stable, thus the switched system is stable
difficult to apply in real cases because of the computational coragardless of the choice of switching times for any finite
plexity and may also result to be not accurate enough. We afsoEach system is autonomous, i.e., we do not need to compute
mention the contribution given by Riedinget al. in [7], [8], a continuous control. The only control input for this system is
[9] where very generadufficientconditions for optimal control the controlled switch/jump. Also switch and jump are coupled,
problems of switched systems are given in terms of hamiltoniinthe sense that thgth jump and thej-th switch are triggered
function. by the same event and occur at the same time.

In this paper we restrict our attention to the case of switch& We assume that a finite constant cost is associated to a each
systems whose subsystems are linear and autonomous. We sdgitch that occur in a finite time. Saying that orilyout of the
assume that the switching sequence is finite and pre—assigneslwitches occur in finite time is equivalent to saying that only
Thus, our problem is that of determining the optimal switchinte firstk out of then allowed switches occur: i.e., only a prefix
timest;, j = 1,--- ,n, at which the hybrid system switches beef the switching sequence may be executed if convenient.
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The results we present show that the optimal control law turnsThen we define the evolution matriceg¢, ) (¢ > 7 > 0)
out to be a “state—feedback”, in the sense that forjatl n by
it is possible to identify a regiod; ,, of the state space such x(t™)=Ult,7)x(rT).
that thej-th switch should occur if and only if we are Within_l_hen ObVIOUSIY. forr 1 < 71 — e — 70 < 7
this region. Furthermore if the switching costs are all null, this "~ Y, 101 J b ks
region is homogeneous, i.e.,afe C; , thenAz € C; ,,, for all
real numbers\.
The original features of our approach can be summarizedais
follows. Firstly, our derivation is based on the analytical deriva- Ut,7;) =U(t, me)MMj_1--- M.
tion of the cost functional rather than the hamiltonian. Sec:ondly,One easil
we are able to show that in this particular case the optimal N ),
trol is a state feedback (and not an open-loop control). Thirdly,
we are able to compute with gsimple pymerical pr.oce(.jure noltj(t ) = cAnir (=) ML o Anba N LM A (=7
only necessary but also sufficient conditions for optimality. ’ " " J @
(_)ne_ limitation of t_he presen_t approach is the fapt _that th%eneven-j_l T T ST S ST <1< Tasn.
switching sequence is pre-assigned. In effect, preliminary re-
sults that are not discussed here, show that our approach garpptimization problem
easily be generallze.d to consider a (possibly infinite) set of le_Given a positive definite/ x N matrix Q, we define the cost
gal sequences provided that they can all be generated by a}u Hctional
nite state automaton over the alphabtt We observe, how-
ever, that there exist significant problems of practical relevanc

U(T:,T) =MMy_1---M,;U(1;,7),

y verifies that, denotey = 7, — 7,1 (j =

PRI f— 71 T
where the present framework (pre-assigned sequence) may T ) o = (HQz(t)dt
successfully applied. Consider, as an example, an active filter- +Z;”:1 (f:jm 2T (1) Qx(t) dt + hj(r]-))
ing problem where by connecting or disconnecting a capacitor )

one aims to reduce the distortion of an output signal. Such,merehj(Tj) = H; — hereH; is a constant — ifr; < +oo0,
proble[n can be framed as a pre-assigned sequence of SWit@]Qﬁlj(q—j) = 0 otherwise. Note that; < -+oo means that the
A—A— A— . wherei(t) = Az(t) is the dynamics of j_th switch occurs after a finite amount of time, white =
the system with the capacitor connected &fft) = Ax(t) iS +oo means that thg—th does not occur, thus its cost is not
the dynamics of the system with the capacitor disconnected. considered.
It may be possible to extend the results we present here tcClearly, using the conventioli (400, 7) = 0 and since
the cases — considered in the literature already mentioned —
where the subsystem dynamics are not all stable but there exki7{s’ eAJT(thJ,l)QeAJ(tffj,l)dt _ eAJTtheAJt 0
a stabilizing switching sequence; this is a topic for future work/+; _, Ti—Ti-1
The paper is structured as follows. In Section 2 we state the ) ) (‘_1)
class of systems considered and the optimization problem WBereZ; are the unique solutions of the Lyapunov equations
want to solve. In Section 3 we show that when a finite number of ATZ 4 Z.A - —Q
switches are allowed, the optimal control is a feedback law and 77 I ’
we present a constructive technique to determine the switchipg get
regions. In Section 4 a complete example is discussed.

Il. THE SYSTEM WITH SWITCHING CONDITIONS F(r o)
. = [ 2lU(t,0TQU(t,0)xo dt
A. System Dynamics o 2oU(%0)7 QU 0)zo
. o no [ e TU (L 0T QU dt + h,; }
Given the switching time® = 70 < 74 < -+ < 7, < +Zﬂ=1 [];] U (1, 0)" QUI(t, 0)mo dt + hy(7;)
Tna1 = 0o, the N x N stable matricesA,--- ,A,41 € A =z j;)ﬁ A thAltdt g
and the switching matricedZ,--- , M, consider the linear

+X 2 U(, 0)T'MT

system whose dynamics are given by .
-f;”l A (t*Tj)QeA-f(t_Tﬂ') dtM ;U (15,0)x0

E(t) = Aja(t), — af Zawo + (g ha(m)
forr;_y <t <, + 2TU(7;,0)" [M].TZNMJ- _ zj] U(Tj,O)mo)
:11(7';):M1€M1€,1'“MjCC(TI)7 (1)

= mgzlwo + (Z?:1 hj(Tj)
N o )
x(0) = . v

fOFTj_l <75 = =Tk < Th+1,
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[1l. STATE-FEEDBACK CONTROL LAW and denote the minimum of (7) as

Ir_1 t_his _section we show '_that t_he optima_l control _IaW for the T2 (y) = Tt (Y, 001 (9)). )
optimization problem described in the previous section takes the
form of a state—feedback, i.e., to determine if a switch frdmn ~ Three cases may occur, as shown in Figure 1.
to A, should occur it is only necessary to look at the current Cases a) and b) are such that; (y) < +oc i.e., we can ob-
system statec. Thus, the optimization problem can be solvethin an optimal discount on the cost of the time—driven evolution
computing a set of state space regiahs,: if the system dy- switching aftero, ; (y) and the optimal discount is
namics isA; we will switch as soon as the state reaches a point i i
in the regiorC; ,,, for j = 1,...,n. V1 (y) =T, 0(y) — T 1 (y). (10)

This is an important result because it is well now that a state—c g ¢) is such tha, ; (y)
feedback control law has many advantages over an open—loop ’
control, including the fact that the computation of the control Ty o(y) =Ty 1 (y)
law can be done off-line as opposed to being performed on—
line. On-line computations are burdensome, especially if a di-» there is no advantage in executing theth switch.
turbance acting on the system may cause the system state to dket us define
viate from its expected value.

To prove this result, we also show constructively how the re- Eno =0, and Eny = Hn.
gionsC;,,, can be computed. We first show how the region,  Taking also into account the switching cost, the optimal re-
for the last switch can be determined. Secondly we show hemaining cost starting frony is
inductively the regioi€; ,, can be computed if the regi@h . ,,

= +oo and thus

is known. Fo(y) = k:%nl{T;,k(y) + En i}
A. Computation of the region for the last switch and the optimal remaining number of switches is
Let us assume that after — 1 switches the current system kn(y) = arg kri%nl (T2 () + B} (11)

dynamics is that corresponding to matuk, and the current
state vector iy with ||y|| = 1.

The optimal remaining cost starting frog will consist of
two terms: a term due to the time—driven evolution, plus (if the 0n(Y) = On i, (y)(Y)-
n—th switch occurs) the switching cost, . _

If no switch occurs and the system evolves with dynamigs L€t US now consider any other vectersuch thatz = Ay,
the remaining cost starting frogis only due to the time—driven With A € R. We can compute for this new vector the equivalent
evolution and is of (6) and (7), i.e.,

Thoy) =y" Zny (6) T:o(x) = 2T Zyax = N2T7 o (y) (12)

where the fist subscript denotes the current dynamics, and thg |
second subscrift denotes the fact that no more switch occurs.

Thus the optimal switch should occur after a delay

We also define, with a notation that will be clarified inthe se- 7, (2, o) = 27Z,x
quel, ’ AT - A
n@ — n@
on.0(y) = +oo. tat e (M, Zn i My — ZJe @
. . . = )\2Tn,1(y59)7
If the system evolves with dynamies,, for a timep and then (13)
a switch toAnH‘ oceurs, the remaining cost stgrtlng froyp Equation (13) is minimized by
only due to the time—driven evolution (disregarding the switch-
ing COSt) iS Qn,l(w) = arg min Tn.,l(mv Q) = Qn,l(y)7 (14)
o
Toi(y,0)= y'Z,y and its minimal value is
7, A" T Ao 9
+y etn [Mn Zn,+1Mn — Zn]e Y, T:71(m) = 7—;,171(1137 Qn,l(w)) = Tn,l(w7 in(y)) =\ T;l('y)
7 (15)

where the fist subscript denotes the current dynamics, and the |f we also take into account the switching cost, the optimal
second subscript denotes the fact that we allow up to 1 morgemaining cost starting from is
switches.

Let us denote the value ofthat minimize (7) as F,(x)

min {T:{’k(a:) +En i}
k=0,1 (16)

0n1(y) = axgmin T (9, 0), ®) min (2T 4 (y) + Fuil,

k=
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Fig. 1. Different cases df’,,1(y, 0).
the optimal remaining number of switches starting frorns If the system evolves with dynamic4; for a time g, then
a switch toA;,, occurs, and then the future evolution is such
ko(z) = arg [in { ve(@) + Eng} that onlyk — 1 < n — j additional switches occurs, the optimal
- (17) remaining cost starting from due to the time—driven evolution
= arg kll_l})nl {x Ty k(y) + Ent,lc} ) (disregarding the switching costs) is
and the optimah—th switch should occur after a delay T;.x(\y, 0)
T
5u(@) = 0k, 0(@) € {0an @) [K=0.1}.  (18)  =aT(Z; — e 2ZeAtla 4 Ty (M eAia)
Finally, we can say that a vectar = \y belongs taC,, ,, if = NyT(Z; — i ez eAvely £ N2Ty o1 (M ey
and only ifé,,(x) = 0, because in this case the optimal remain- _ = AT},
k(Y 0),
ing cost can be obtained switching as soon as we reaeith (20)
no delay. According to the previous discussion, this occursfgr allk=1,. it
and only ifo,1(y) = 0 (i.e., T, 1(3’07 5) has the shape shown in Thus for aIIy on the unitary semi-sphere we compute, solving
Figure 1.2) andh| > (Hn /.1 (y _)) . . — j + 1 one-parameter optimization problems, the valug of
Note that to compute the switching regio,, and to deter- that minimize (20) with\ = 1 for all values ofk = 1,...,n —
mine the optimal remaining co$t,(x), we only need to com-
pute the value,, 1 (y) with a one-parartteter opttm|zat|on (seé 0ix(y) = argminT; 4 (y, 0), 1)
equations (7) and (8)) for al} on the unitary semi-sphere. The 0

corresponding values df; ,(y) andT}; ;(y) can be obtained and denote the corresponding minimum as
applying equations (6) and (9), while to determine if a vector

@ = \y belongs tcC,, ,, and to compute the corresponding op- T7(y) = Tj1(Y, 0j.k(y))- (22)
timal remaining cost we only need to apply equations (16), (17) _
Let us define
and (18).
Ej70 == O

B. Computation of the regions for the intermediate switches andfork = 1,....n—j+1,

We now generalize the previous approach to determine the
switching region€; ,,, forj =1,...n — 1. k
Assume that: gk = ZHJH 1
« we have already computed regi6py ; ,,;
« for each vectory on the unitary semi-sphere we know the Taking also into account the switching cost, the optimal re-
optimal costT’,, ,(y) for the remaining time—driven evolu- maining cost starting fronz is
tion that starts fromy with dynamicsAjH and allowsk more
switches (withk = 0, . —5); Fj(x) = b0, minn {/\2 () + Bl (23)
< forallk=0,....n—j itholds T ) = ATy (). oIt
Let us assume that aftgr— 1 swﬂches the current systemthe optimal remaining number of switches is
dynamics is that corresponding to matuk; and the current

state vector is: = Ay with |y = 1. kj(@) =arg ?}H{Hl{)\z ) T Ejky (24)
If no switch occurs and the system evolves with dynardgs
the remaining cost starting from = \y is and the optimal switch should occur after a delay

Tio(w) =" Zjw = Ny " Z;y = NT5(y). (19) () = 0jk,00(@) € {ojk(y) [ k=0,--- ,n—j+1}. (25)

We also define Finally, we can say that a vectar = Ay belongs toC; ,, if
0j,0(y) = +oc. and only ifd;(z) = 0.
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C. Structure of the switching regions

We now discuss the form that the switching regions may take.

Let us first state a trivial fact.
Factl: Forallz ¢ RN, j=1,...,nandk =0,...,n —j
holds
17 (@) <Tj ().

Proof: This can be easily shown by induction gn The
result is true forj = n andk = 0, 1, by equations (12) and (13)
(base step). Assume the result holdsffar 1; then it also holds
for j given equations (19) and (20) (induction step). O

Let us now consider the case of null switching costs.
Proposition2: Consider the case in whicH; = 0 for all
j=1,...,n.Thenforallj =1,...,nand allA € R:

yeljn =My <Cjy

i.e., the regiong; ,, are homogeneous.

Proof: Thanks to Fact 1, it is immediate to see that if a
costs are nulk;(x) = k;j(y) = n—j + 1 andd;(x) = d;(y).
ThUS(sj (y) =0= 6J(az) =0. O

In the cases of non-null switching costs, the valué gh\y)
and correspondingly of; (A\y) may depend on\. However, for
anyy on the unitary semi-sphere we can define

ki(y) = min{k | T}y (y) = T}, 1 ()}
Itis immediate to see that there existd gy) > 0 such that
ki(\y) = k;(y)

forall A € R with [\ > X;(y).

We can thus state the following result.
_ Proposition3: Forallj =1,...,n,andall\ € Rwith |\| >
X(w):

Ay eCin= Ay €Cjn.

IV. NUMERICAL SIMULATIONS
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Fig. 2. The switching regions; ,,, j = 1,2, 3 in the case of no cost associated
to switches, and the system evolution fay = [—0.2, 0.6].
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Fig. 3. The switching region§; ., j = 1,2, 3 in the case of non—null costs
associated to switches, and the system evolutiorfo= [1.3, 1.4].

In this section we present the results of some numerical simu-
lations. In particular, we consider a second order system whose

dynamics may only switch between two matricés’ andA?.
We also assume that only three switches are possibte @)
and the initial system dynamics &Y. Thus, the sequence of
switching isA® — A®) — AM —, A®) where

-1 1

1 -5

-3

AL — A —

—-18 -5 1

A. First case

The switching region§; ,,, j = 1,2, 3, are shown in figure 2
where the following color notation has been used: the lighter
region represents the set of states where the system switches to
the next dynamics, while the darker region represents the set of
states where the system still evolves with the same dynamics.

In the bottom right of figure 2 we have shown the system
evolution in the case afy, = [—0.2, 0.6].

Note thatA)) and A® are stable non-commuting matrices, 1ne switching times are, = 0.61, 7> = 1.34 andr; = 1.49,
e, ADA® # A AD  \We also assume that aMl; are and the optimal cost i8'(71, 72, 73) = 0.19.
equal to the identity matrix.

We consider two different cases. We firstly assume that ﬁo
cost is associated to switches. Secondly, we associate a constaNbw, let us assume that non—null costs are associated to
cost to each switch. switches. In particular, let us assume tliat = Hs; = 0.3

Second case
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Fig. 4. The switching region€3 3 for different values of the costlz &
{0.1,0.5,2}.

andH, = 0.1.
The switching region§; ,,, j = 1,2, 3, are shown in figure
where we used the same color notation as above, i.e., the

region represents the set of states where the system switches t0

the next dynamics, and the darker region represents the

[3] M.S. Branicky, “Multiple Lyapunov Functions and Other Analysis Tools for
Switched and Hybrid SystemdEEE Trans. on Automatic ContrdVol. 43,
pp. 475-482, 1998.
M.S. Branicky, R. Hebbar, G. Zhang, “A fast marching algorithm for hy-
brid systems” Proc. 38th IEEE Conf. on Decision and Control (Phoenix,
Arizona) pp. 4897-4902, December 1999.
S. Hedlund, A. Rantzer, “Optimal Control of Hybrid SystemBfpc. 38th
IEEE Conf. on Decision and Control (Phoenix, Arizonpp. 3972-3977,
December 1999.
B. Hu, X. Xu, A.N. Michel, P.J. Antsaklis, “Stability Analysis for a Class
of Nonlinear Switched SystemsProc. 38th IEEE Conf. on Decision and
Control (Phoenix, Arizona)pp. 4374-4379, December 1999.
P. Riedinger, C. Zanne, F. Kratz “Time Optimal Control of Hybrid Sys-
tems”, Proc. 1999 American Control Conference (San Diego, CA, USA)
June 1999.
P. Riedinger, C. lung, “Optimal Control for Hybrid Systems: a Hystere-
sis Example”,Proc. 1999 IEEE Conf. on Systems, Man and Cybernetics
(Tokyo, Japan)October 1999.
P. Riedinger, F. Kratz, C. lung, C. Zanne, “Linear Quadratic Optimiza-
tion for Hybrid Systems”Proc. 38th IEEE Conf. on Decision and Control
(Phoenix, Arizong)pp. 3059-3064, December 1999.
[10] X. Xu, P.J. Antsaklis, “Design of stabilizing control laws for second—order
switched systems'Rroc. 14th IFAC World Congress (Beijing, Chinduly
1999.
3 [11] L.Y. Wang, A. Beydoun, J. Cook, J. Sun, I. Kolmanovsky, “Optimal Hy-
Iig hterbrid Control with Applications to Automative Powertrain SystemsNCIS
22, Springer—Verlag, 1997.
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(3]

6]

(7]

8l

[0

set of

states where the system still evolves with the same dynamics.

In the bottom right of figure 3 we have shown the system

evo-

lution in the case ok = [1.3, 1.4]. In this case, the switching
times arer; = 0.014, » = 0.5 andr3 = +o00, and the optimal

costisF'(r, 12, 73) = 0.75.

Let us finally observe that if we assume that the initial state
is the same as in the previous case, ug.= [—0.2, 0.6], the
system evolution is not affected by costs, and is the same as that

shown in figure 3.

C. Modification of the regions

To show how the switching regiodi; ,, may change a$;
varies, we have also computed for this example the regigp
for different values of/; € {0.1,0.5, 2}.

These regions are shown in figure 4, where larger region
respond to smaller values éfs.

V. CONCLUSIONS

We have considered a special class of switched systems

S

S cor-

where

the switching sequence is finite and pre-assigned, and each sub-

system is stable and autonomous.

We showed that the optimal control for this class takes the
form of a state feedback, i.e., it is possible to identify a region

of the state space such that an optimal switch should occur

if and

only if the present state belongs to this region. Such a region can

be efficiently computed with an off-line numerical procedu
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